

SpaceEx:

Scalable Verification of Hybrid Systems

Goran Frehse, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Thao Dang, Oded Maler Université Grenoble 1 Joseph Fourier / CNRS – Verimag, France

> Colas Le Guernic New York University CIMS

Antoine Girard Laboratoire Jean Kuntzmann, France

CAV Snowbird, Utah, 18 July 2011

Outline

- SpaceEx Verification Platform
- Hybrid Systems Reachability
- SpaceEx Reachability Algorithm
 - Time Elapse with Support Functions
 - Transition Successors Combining Support Functions and Polyhedra
 - Fixpoint Algorithm: Clustering
- Examples

SpaceEx Verification Platform

• Platform for developing verification algorithms

- Analysis Core (90kloc C++)
- Model Editor
- Web Interface

• Provides data structures, operators, infrastructure

- proprietary polyhedra library
- number type is templated (substitute your own)
- interfaces to linear programming solvers (GLPK, PPL), Parma Polyhedra Library, ode solvers (CVODES)
- Open Source: spaceex.imag.fr

SpaceEx Model Editor

SpaceEx Web Interface

	Home About SpaceEx Documentation Run SpaceEx Downloads Contact				
Model Specification Options Output Advanced	Console Reports				
Model editor Download Model file Browse_ Configuration file Load Save User input file User file Examples Bouncing Ball (.xml, .cfg) Timed Bouncing Ball (.xml, .cfg) Nondet. Bouncing Ball (.xml, .cfg)	Iteration 6 8 sym states passed, 1 waiting 0.457s Iteration 7 9 sym states passed, 1 waiting 0.941s Iteration 8 10 sym states passed, 1 waiting 0.434s Iteration 9 11 sym states passed, 1 waiting 0.936s Iteration 10 12 sym states passed, 1 waiting 0.457s Iteration 11 13 sym states passed, 1 waiting 0.455s Iteration 12 14 sym states passed, 1 waiting 0.917s Found fixpoint after 14 iterations. Computing reachable states done after 10.058s Output of reachable states 0.823s				
Circle (.xml, .cfg)	Graphics				
 Filtered Oscillator 6 (.xml, .cfg) Filtered Oscillator 18 (.xml, .cfg) Filtered Oscillator 18 (.xml, .cfg) Filtered Oscillator 34 (.xml, .cfg) A filtered oscillator. Same as the 6-variable filtered oscillator, but with a higher order filter. With 34 state variables, an analysis with octagonal constraints is no longer practical, since this requires 2*34^2=2312 constraints to be computed at every time step. The analysis with 2*34=68 box constraints remains cheap.					
Browser-based GUI –2D/3D output					
-runs remotely					

SpaceEx Reachability Algorithms

Support Function Algo

- -many continuous variables
- -low discrete complexity

PHAVer

-constant dynamics (LHA)

-formally sound and exact

Simulation

- -nonlinear dynamics
- -based on CVODE

Hybrid Automata with Affine Dynamics

- linear differential equations
- can be highly nondeterministic:
 - additive "inputs" u, w model continuous disturbances (noise etc.)
 - uncertain switching regions
 - uncertain switch result

Reachability of Hybrid Automata

• reachability is hard for continuous dynamics

- complex, nonconvex sets
- even harder for hybrid dynamics
 - involves reachability of continuous dynamics
 - plus event detection over a dense domain
- approximations needed that are efficient but accurate for large number of variables

Improving Reachability with Support Functions

- Efficient time elapse algorithm for high dimensions
 - Le Guernic, Girard, CAV 2009
- Problems & proposed improvements
 - set representation inefficient for reachability fixpoint algorithm (intersection & containment)
 - switch to polyhedra and back when better
 - large, uniform overapproximation with conservative error bounds
 - more accurate, non-uniform overapproximation
 - fixed time step
 - adaptive, multi-scale time step

Reachability of Affine Continuous Dynamics

autonomous dynamics influence of inputs

- solution at discrete time steps
- cover flowpipe with convex sets Ω_i: approximation model

Approximation Models – Prev. Work

• convex hull constraints + bloat with $\sim e^{\|A\|\delta}$

Asarin, Dang et al., HSCC 2000

- error large and uniform
- exponential cost

• bloat last set with $\sim e^{\|A\|\delta}$ + convex hull Le Guernic, Girard, CAV 2009

- error large and uniform
- efficient for high dimensions

New Approximation Model

• approximate set for each t+ bloat with ~ $e^{abs(A)\delta}AX_0$

 error small and non-uniform thanks to math tricks • intersect forward and backward approximations

without inputs:
 exact at t=0 and t=δ

Representing of Convex Sets

- Approximation with Supporting Halfspaces
 - given template directions = outer polyhedral approximation

Representation of Convex Sets

• Support Function

- direction \rightarrow position of supporting halfspace
- exact set representation

• Implemented as function objects

 applying an operator creates new function object

New Approximation Model

• Choose set representation on operator efficiency

	Polyhedra			
Operators	Constraints	Vertices	Zonotopes	Support F.
Convex hull		+	-	++
Linear transform	+/-	++	++	++
Minkowski sum			++	++

Minkowski sum:

New Approximation Model

- efficiently computable with support functions
- set computation reduced to set of scalar optimization problems
- error bounds for each template direction
- but: intersecting with invariant inefficient for s.f.
 - switch to outer polyhedron approx.

Clustering

- Every convex set spawns a new flowpipe
 - number of sets explodes
- Cluster using template hull (outer polyhedron) and convex hull

Transition Successors with Clustering

Fixpoint Algorithm

Example 1: Filtered Switched Oscillator

Switched oscillator

- 2 continuous variables
- 4 discrete states
- similar to many circuits (Buck converters,...)
- plus linear filter
 - *m* continuous variables
 - dampens output signal

• affine dynamics

- total 2 + m continuous variables

Filtered Switched Oscillator

• Low number of directions sufficient?

- here: 6 state variables

Example 1: Filtered Switched Oscillator

• Scalable:

- fixpoint reached in $O(nm^2)$ time
- box constraints: $O(n^3)$
- octagonal constraints: $O(n^5)$

Clustering indispensible

- 57 sets take first jump
- combination of template and convex hull: compromise in speed and accuracy

number of variables n

Example 2: Controlled Helicopter

• 28-dim model of a Westland Lynx helicopter

- 8-dim model of flight dynamics
- 20-dim continuous $H\infty$ controller for disturbance rejection
- stiff, highly coupled dynamics

Example 2: Controlled Helicopter

• Reachability for uncertain initial states:

- old approx.:
- new approx.:
- variable time step: (without interpolation)

200s error large
 24s error < 0.025
 14s error < 0.025

Example 2: Controlled Helicopter

• Reachability for uncertain initial states:

- old approx.:
- new approx.: 24s error
- variable time step: (without interpolation)

 200s
 error large

 24s
 error < 0.025</td>

 14s
 error < 0.025</td>

Example 2: Controlled Helicopter

• Reachability for uncertain initial states:

- old approx.:
- new approx.:
- variable time step: (without interpolation)

200s error large
24s error < 0.025
14s error < 0.025

Example 2: Controlled Helicopter

• Max error per template direction:

Example 2: Controlled Helicopter

• Max error per template direction:

Conclusions

• SpaceEx Verification Platform

- available at spaceex.imag.fr
- tutorial with solutions for course work

• Scalable reachability for piecewise affine dynamics

- fixpoint computation with 200+ variables

• Algorithmic improvements

- approximation improved significantly
- switching set representations for best efficiency
- variable time step with error bounds