
Modular, Hierarchical Models of Control Systems in SpaceEx

Alexandre Donzé1, Goran Frehse2

Abstract— The Hybrid I/O-automaton (HIOA) is a rigorous
formal model designed for the analysis of complex hybrid
(discrete-continuous) dynamical systems. The use of the HIOA
formalism renders compositional reasoning possible, in the
sense that once a property has been established for an au-
tomaton, it still holds if the automaton is composed with other
automata. In this paper, we show how control systems can be
modeled and verified in SpaceEx as HIOA in a modular fashion.
Formally, HIOA models distinguish between controlled and
uncontrolled variables. With examples and usage guidelines we
relate these to the concepts of input/output and state/algebraic
variables most control designers are familiar with. Additionaly,
we enlargen the applicability of our HIOA by allowing variables
to be controlled in more than one automaton. While this
invalidates compositionality, it gives users who do not intend to
use compositional reasoning more freedom in their modeling
choices. Finally, we show how we can algorithmically bring
control systems given by semi-explicit differential algebraic
equations to the form understood by the SpaceEx reachability
algorithm.

I. INTRODUCTION

With recent progress in verification techniques, tools such
as SpaceEx can now be used to compute the reachable states
of systems with piecewise affine dynamics involving hun-
dreds of state variables [1]. Control systems are a promising
application domain for these methods, but they are not typ-
ically given directly in the form suitable to SpaceEx, whose
algorithms are based on a monolithic (flat) model involving
ODEs. Consider the classic control system structure shown in
Fig. 1. It consists of set of connected components – a plant,
an observer, a controller, and a sensor. SpaceEx models are
hybrid automata, which define the evolution of continuous
variables over time with a set of differential equations.
The automaton can instantaneously switch between differ-
ent locations (modes), each with its own set of equations.
A model hierarchy is realized using the SpaceEx model
language [2], since components (hybrid automata) can be
composed to form new components. Common components
can be shared and reused between models in much the same
way as Simulink blocks are in Matlab/Simulink [3].

The verification algorithms implemented in SpaceEx re-
quire the continuous dynamics of the system to be given in
the form of a linear ordinary differential equation (ODE),

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (1)

*This work was supported in part by the EU project MULTIFORM under
grant INFSO-ICT-224249.

1A. Donzé is with the Department of Electrical Engineering and Com-
puter Science of UC Berkeley, donze@eecs.berkeley.edu

2G. Frehse is with the Department of Computer Science of Grenoble
University at Verimag labs, frehse@imag.fr

input
w(t)

Controller
u = −Kx̂ + Mw

Plant
ẋ = Ax+ Bu

states
x(t)

Observer
˙̂x = Ax̂+Bu+ Ly

Sensor
y = Cx

Fig. 1. Block diagram of a linear plant with proportional state feedback
controller and Luenberger observer

where x(t) ∈ Rn, A is a real-valued n× n matrix and U ⊆
Rn is a closed and bounded convex set. The compositional
modeling of control system components requires algebraic
constraints. For the classic proportional state feedback con-
troller shown in Fig. 1, the algebraic constraints are the
feedback controller and the sensor equations,

u = −Kx̂+Mw and y = Cx.

In this paper, we discuss how control systems can be modeled
in a modular way using the modeling formalism of SpaceEx,
hybrid I/O automata. In particular, we motivate the use of
the HIOA formalism and illustrate its application to control
problems through examples. We also show how we bring
the semi-explicit DAEs that arise in control systems to the
ODE form used in the SpaceEx reachability algorithm. This
transformation is non-trivial since the SpaceEx models can
include nondeterministic disturbances in both ODEs and
discrete assignments to variables. For lack of space, we omit
syntactic details and refer the reader to [2].

In Sect. II, we try to illustrate why it is useful to dis-
tinguish different types of variables, and how these types
are related. In Sect.III, we present the HIOA formalism
used in SpaceEx and show that it does not reduce the
modeling capabilities compared to using more general hybrid
automata. Finally, Sect. IV presents a transformation from
DAEs to ODEs to bring control system models to a form
suited to our reachability algorithm.

II. A BRIEF ZOOLOGY OF VARIABLES

Browsing the literature on hybrid systems and control
theory (both theory and tools), one finds that variables
are classed in different categories with distinct semantics:
state vs algebraic variables, input vs output variables, and
controlled vs uncontrolled variables. While the first category
arises from the model equations, the latter two may be less
obvious to choose in the modeling process. But they can help
us to simplify the notation and to model systems in a modular

x := x + 1

(a) component H1

y = 2x

(b) component H2

ẏ = x

(c) component H3

Fig. 2. In this example, a local change of x in H1 is intended to change
y in H2, but leave y unchanged in H3

yet formally sound and unambiguous manner. This in turn
helps with model reuse and with compositional analysis.

The above categories are a priori unrelated, but – as will
be detailed below – a good starting point is to consider
• input and algebraic variables as uncontrolled,
• state variables as controlled in the component where

their derivative is defined.

Example II.1. Consider a hybrid system with two compo-
nents shown in Fig. 2(a) and Fig. 2(b). The first component,
H1, has a discrete transition that changes the value of a
variable x, say x := x+ 1. The second component, H2 has
no transitions, only the invariant y = 2x. This could model,
e.g., a sensor measurement of the variable x, or a feedback
law, so it is entirely reasonable to have this modeled in a
component separate from H1. If the intended behavior is that
y is determined by the value of x, then the discrete transition
in component H1 must change both x and y simultaneously,
even though component H2 makes no explicit mention of
any discrete transition, never mind synchronization.

Now consider H1 together with H3 shown in Fig. 2(c),
which has no invariant but the flow equation ẏ = x. Here, the
intended meaning is that y integrates x, but does not change
in any other way. Running H1 and H3 together, the discrete
transition in H1 is not supposed to change y. Comparing the
two settings, H1 together with H2 and H1 together with H3,
the transition that is local to H1 has a completely different
effect. Since in both cases the component H1 is the same, one
must somehow be able to specify in the other components
whether y is supposed to remain unchanged or not if H1

carries out a transition.

A. Controlled/Uncontrolled Variables

The notion of controlled/uncontrolled variables allows one
to specify whether transitions of other components may
change a variable [4], [5], [6]. A hybrid automaton has a
set of labels, and each discrete transition in the automaton
is associated with one of these labels. When two automata
are put together or “composed”, they synchronize on shared
labels as follows. If both automata are in a location with
a discrete transition of the same label, both transitions are
executed as a single instantaneous event. If either automata
in a location does not have a transition with a shared label
or can not take it, the transition of the other automaton is
blocked as well. Transitions with labels that are not shared
can take place independently. We call such transitions local.

With that out of the way, we are ready to define controlled
variables: A controlled variable remains constant whenever

other components carry out local transitions, except if they
also declare it as a controlled variable. An uncontrolled
variable may change at any time to any value, as long as
it satisfies the invariant.

The latter requirement is necessary to be consistent with
the fact that local transitions in other components are al-
lowed to change an uncontrolled variable at any time. In a
compositional framework, these changes need to be present
in any component that has the uncontrolled variable. This is
the essence of what differentiates a compositional modeling
framework from one that is not, as will be discussed in
Sect. III. Formally, one defines implicit self-loop transitions
in every location that may at any time reset the uncontrollable
variables to any value in the invariant.

Example II.2. Consider again Ex. II.1. In component H2,
we need to declare variable y as uncontrolled, so that y
can be subjected to change when component H1 takes its
transition. In component H3, we need to declare variable y
as controlled, so y remains constant when component H1

takes its transition.

When modeling and visualizing hybrid automata, it is
established practice to only mention in transitions the vari-
ables that change, with the implicit assumptions that all
other variables remain constant [7]. As Ex. II.1 illustrates,
this practice can easily lead to modeling mistakes. Declaring
variables as controlled or uncontrolled can to some extent
help with preventing mistakes. In SpaceEx, variables that
are not explicitly assigned in a transition remain constant if
they are controlled, and can change arbitrarily otherwise.

B. Input and Output Variables

In control systems such as the one in Fig. 1, input and
output variables arise naturally from the definition of the
system: the output variables are those that are measurable or
relevant to the outside (or the specification), here x, while the
input variables are those with which one intends to control
the behavior of the system, here w. If the system is given
by an ODE ẋ = f(x, u), the inputs are the independent
variables u, which are characterized by the fact that their
derivatives are unconstrained.

One usually studies the evolution of the outputs as a
function of the “open” (undefined) inputs. Our verification
algorithms are not suited to open systems, and require
the inputs of the control system to be given or at least
restricted to a useful degree by an input generator. In modular
modeling, it is often imposed that components can only use
variables of other components if they declare them as inputs,
and the other components declare them as outputs.

The distinction between inputs and outputs is less evident
when acausal relationships between different elements of a
system may exist, which is easily the case when regarding
low level components. Acausal relationships abound in do-
mains like mechanics, electrical circuits and thermodynamic
systems. They are difficult to model in a modular way
by models with sequential operational semantics, such as
standard Matlab/Simulink models [3], in which the inputs

ẋi = vi,
v̇i = −c(xi − x0,i)

xi + d ≤ xi+1

xi + d ≥ xi+1 ∧ vi > vi+1,
v′i = evi+1 ∧ v′i+1 = evi

(a) Model Pi of the ith pendulum,
freely swinging

(b) Model Ci of the collision
between two adjacent pendulums

Fig. 3. A modular model of N colliding pendulums, consisting of one
component for each of the N pendulums in its freely swinging form, and
of one component for each of the N − 1 collisions

have to be known at each time instant before the correspond-
ing outputs can be computed. The need for more general
component interactions is satisfied by modeling frameworks
such as Modelica [8], Matlab extensions such as SimScape
[3], and tools such as gPROMS [9].

Example II.3. A modular model of N colliding pendulums
(linearized) is shown in Fig. 3. It consists of one automaton
for each of the N pendulums in its freely swinging form,
and of one automaton for each of the N − 1 collisions.
The pendulum positions are given xi, their velocities by vi
and their position at rest by x0,i. The pendulum bobs are
considered balls of diameter d. The parameter c determines
their oscillation frequency and e is a factor between 0 and 1
that models the energy loss at collision. The model is elegant
but which variables are to be considered in- and outputs? The
collision model uses position and velocity variables from the
pendulum models, so they could be inputs. But it changes
the velocity variables, which is somewhat contrary to the
idea of an input. How about controlled and uncontrolled
variables? Clearly, we don’t want xi and vi to be changed
in arbitrary ways at any time, so they have to be declared
controlled in the pendulum models. If we declare vi as
uncontrolled in the collision models, then changing their
variables would not be allowed and the collision transitions
would be blocked. We therefore must declare vi controlled
in both the pendulum and the collision models that use it.
This violates the compatibility assumptions of compositional
reasoning, but if we don’t care about compositionality this
is a perfectly good model.

A compositional solution requires the discrete updates
of shared variables to be carried out with synchronized
transitions. This can be achieved with a separate model for
each velocity, in which we include the differential equation
for vi as well as the transition update for vi only. This
transition is synchronized with the collision model by using
the same shared label, say aij . The vi are controlled in the
velocity models and uncontrolled everywhere else. Despite
vi being controlled elsewhere, the transition in the collision
model is not forced to leave vi unchanged, since it is no
longer a local transition. Because of the synchronization it
is irrelevant whether the updates to vi are associated with the
transition in the velocity model or in the collision model, the
latter preserving the neatness of the original solution.

C. State and Algebraic Variables

The state of a system is a set of values for a minimal set
of variables that suffices to predict the future evolution of the
system from that state onward. With a system of differential
equations or inclusions, the state variables are those whose
derivative is defined or constrained. The other variables,
defined or constrained by purely algebraic equations or
inequalities, are called algebraic. From the above definition
it is clear that a state variable can not be uncontrolled, since
a variable that can change arbitrarily at any time can not
possibly be essential to knowing the future. The algebraic
variables by definition may take any value that satisfies the
algebraic equations. Assuming the algebraic equations are
part of the invariant, this corresponds to the notion of an
uncontrolled variable.

Example II.4. Going back to the colliding pendulum ex-
ample, Ex. II.3, we see that in all three model variants that
were discussed, the variables are controlled in the component
where its derivative is defined. However, the velocities vi are
algebraic in the collision component in Fig 3 (b), yet they
need to be controlled in order to keep the transition from
being blocked by the pendulum component. This is because
they are modified by the discrete transition.

As the example indicates, algebraic variables should not
automatically be considered uncontrolled. While we forgo
any claim to generality, we conclude that state variables
correspond to controlled variables (but not vice versa),
and algebraic variables correspond to uncontrolled variables
unless they are modified by discrete transitions.

III. FORMALITIES OF SHARING VARIABLES:
TO I/O OR NOT TO I/O

The notion of controlled variables described in the pre-
vious section restricts what one is allowed to do with
variables that are shared between different components. This
raises the question whether this “compositional” modeling
framework is handicapped with respect to more general, non-
compositional variants. As we will see in this section, the
answer is no: Every non-compositional model can be cast
to a compositional model with a little extra effort, namely
by explicitly modeling what is considered to happen to
shared variables. To support this claim, we need a formal
description of our models and their interaction. To model and
analyze complex systems, it useful to divide the system into
components, and model each component with an automaton.
An automaton modeling the entire system is then obtained
by combining these components with a so-called parallel
composition operator. The complexity of an analysis of
such a composed system increases exponentially with the
number of components. In compositional reasoning, one tries
to circumvent this problem by analyzing the components
themselves, and deriving properties of the composed system
from the results. A simple form of compositional reasoning is
possible when any safety property of a component also holds
when the component is composed with the rest of the system.
If this is the case, the automata are called compositional

with respect to parallel composition. For this to be true,
restrictions must be imposed on the way variables can change
[10], i.e., restrictions on the automaton model as well as on
the parallel composition operator.

To discuss the difference between compositional and non-
compositional models, the next section defines hybrid au-
tomata without restrictions on how variables are shared, and
hybrid input/output-automata that include such restrictions.
In the section afterwards, we will compare these models
using a notion of equivalence called bisimulation, using the
colliding pendulums as a running example.

Related Work: Most hybrid automata models in literature
do not include restrictions that enforce compositionality [11],
or do not model shared variables in the composition [12],
[13]. Compositional reasoning is possible with the model in
[4], see, e.g., [14]. The formalism is relatively simple and
intuitive, so we use it in two variations: without controlled
variables and stutter transitions it is comparable to the
one in [13]; with input-, controlled and output variables it
provides a simple compositional model that we call hybrid
input/output-automaton. More sophisticated compositional
hybrid input/output-automata are proposed and studied in
detail in [15].

A. Hybrid Automata and Semantics

Preliminaries: Given a set X = {x1, . . . , xn} of variables,
a valuation is a function v : X → R. Let V (X) denote
the set of valuations over X . Let Ẋ = {ẋ1, . . . , ẋn} and
X ′ = {x′1, . . . , x′n}. The projection of v to variables Y ⊆
X is v ↓Y = {x → v(x)|x ∈ Y }. The embedding of
a set U ⊆ V (X) into variables X̄ ⊇ X is the largest
subset of V (Y) whose projection is in U , written as U |X̄ .
Given that a valuation u over X and a valuation v over Y
agree, i.e., u↓X∩X̄= v↓X∩X̄ , we use u t v to denote the
valuation w defined by w↓X= u and w↓X̄= v. An activity
over X is a function f : R≥0 → V (X). Let Acts(X)
denote the set of activities over X . The derivative ḟ of
an activity f is an activity over Ẋ , defined analogously
to the derivative in Rn. The extension of operators from
valuations to activities is done pointwise. Let constX(Y) =
{(v, v′)|v, v′ ∈ V (X), v↓Y = v′↓Y }.

We first define hybrid automata without restrictions on
how variables are shared. For easier comparison with HIOA,
we require a stutter transitions in every location. The stutter
transitions may leave the variables constant, which is usually
the case in a non-compositional model, but will be used later
to model changes of the input variables.

Definition III.1 (Hybrid Automaton). A hybrid automaton
(HA) A = (Loc, X , Lab, Edg , Flow , Inv , Init) consists of:
• A finite set Loc called locations.
• A finite set called variables X . A pair p = (l, v) of

a location and a valuation over X is a state of the
automaton and the state space is SH = Loc×V (X). For
a state p = (l, v) we define loc(p) := l and val(p) := v.
For a set of variables Y , let valY (p) := v↓Y .

• A finite set Lab of synchronization labels including the
stutter label τ .

• A finite set Edg of edges called transitions. Each tran-
sition e = (l, a, µ, l′) consists of a source, respectively
target locations l, l′ ∈ Loc, a synchronization label
a ∈ Lab, and a jump relation µ ⊆ V (X)2. We require
that for every location l ∈ Loc there is a stutter
transition (l, τ, µ, l) ∈ Edg with some µ such that
constX(X) ⊆ µ.

• A set Flow ⊆ Loc ×V (X ∪ Ẋ) called flows.
• A set Inv ⊆ Loc × V (X) called invariant.
• A set Init ⊆ Inv called initial states.

In our compositional model a variable is either an in-
put, and can therefore change arbitrarily at any time, or
controlled. In parallel composition, controlled variables can
not be changed independently by other automata in the
composition. These elements are essential to composition-
ality [10]. A subset of the controlled variables are output
variables, which, together with the input variables, define the
externally visible behavior of the automaton. Note that the
inputs may be restricted in their derivatives and can change
arbitrarily as long as they satisfy the invariant. This allows us
to model causal and noncausal coupling between variables.
The resulting model is a slight variation of the one in [4]. 1

Definition III.2 (Hybrid I/O-Automaton). A hybrid Input/-
Output-automaton (HIOA) H = (A,C,O) consists of a
hybrid automaton A, a subset C of the variables X that
are called controlled variables, and a subset O ⊆ C called
output variables. Let I = X \ C be the input variables
and E = I ∪ O the external variables. We require that
for every location l ∈ Loc there is a stutter transition
(l, τ, constX(C), l) ∈ Edg .

Semantics: We define the semantics of automata in terms
of runs and traces, and will use them in the next section
to define different notions of equivalence. A run defines the
internal behavior of a hybrid automaton, a trace defines the
externally observable behavior. An activity f(t) ∈ Acts(X)
is called admissible over an interval [0, δ] in a location l if
δ = 0, or ∀t, 0 ≤ t ≤ δ : f(t) ∈ Inv(l), f(t) t ḟ(t) ∈
Flow(l).

Definition III.3 (Run). An atomic run σ = (l, v)
δ,f,a−−−→

(l′, v′) consists of source and target states (l, v), (l′, v′), a
delay δ ∈ R≥0, an activity f and a label a ∈ Lab such that
• v ∈ Inv(l), v′ ∈ Inv(l′),
• f is admissible over [0, δ] in l and f(0) = v,
• there is a µ such that (l, a, µ, l′) ∈ Edg , (f(δ), v′) ∈ µ.

A run of a hybrid automaton H is a finite or infinite sequence

σ = (l0, v0)
δ0,f0,a0−−−−−→ (l1, v1)

δ1,f1,a1−−−−−→ (l2, v2) . . .

such that σi = (li, vi)
δi,fi,ai−−−−−→ (li+1, vi+1) is an atomic run

for all i ≥ 0.

1It differs in that we define a subset of the controlled variables as output
variables, specify the activities via their derivatives, include a set of initial
states, and the controlled variables are the same for all locations.

Definition III.4 (Trace). A trace ρ over a set Y of vari-
ables, Lab of labels is a finite or infinite sequence ρ =
(δ0, f0, a0)(δ1, f1, a1) . . . of delays δi ∈ R≥0, activities
fi ∈ Acts(Y) and labels ai ∈ Lab. The trace of a run σ is its
projection onto the activities of the external variables, i.e.,
the sequence trace(σ) = (δ0, f0↓E , a0)(δ1, f1↓E , a1) A
trace ρ is a trace of a hybrid automaton H if there exists
some run σ such that ρ = trace(σ).

B. Equivalence and Expressiveness

We wish to express that a hybrid automaton G is a valid
abstraction of a hybrid automaton H (or equivalently that H
refines G). To do so, we define a simulation relation over
the product of their states. It relates a state in H to those in
G that have the same, or more, behavior. To be consistent
with our input/output framework, two HIOA can only be
compared if they have comparable inputs and outputs. If G
has more inputs than H it could be blocked by some K that
does not block H , which violates compositionality.

Definition III.5. H is comparable with G if LabH = LabG,
IH ⊇ IG and OH = OG.

Definition III.6 (Trace Simulation). Let H and G be either
both hybrid automata or both HIOA. If they are hybrid
automata we require that XH = XG. Let E = EG if they
are HIOA, and E = XG otherwise. A relation R ⊆ SH×SG
is a trace simulation relation between H and G iff for all
(p, q) ∈ R, δ, f, a, p′, an atomic run p

δ,f,a−−−→H p′ in H
implies a matching atomic run in G, i.e., that there are g, q′

with q
δ,g,a−−−→G q′ ∧ (p′, q′) ∈ R ∧ ∀t : f(t)↓E= g(t)↓E . We

write H �t G iff there exists a trace simulation relation R
such that InitH ⊆ R−1(InitG).

If G � H and H � G in a symmetric way, i.e., witnessed
by the same simulation relation, G and H are, for all practical
purposes, equivalent. This is referred to as bisimulation:

Definition III.7 (Bisimulation). A simulation relation R is
a bisimulation relation between H and G iff R is simulation
relation for H �t G and R−1 is a simulation relation for
G �t H . Bisimulation equivalence is denoted with ∼=.

To be able to compare hybrid automata and HIOA we
transform the hybrid automata into a HIOA. To fulfill the
restriction on τ -transitions in HIOA, we add such transitions.

Definition III.8 (Simulation between HA and HIOA). Given
a hybrid automaton A and a set of controlled variables C, let
Aτ (C) = (Loc, X , Lab, Edgτ (C), Flow , Inv , Init), where
Edgτ (C) = Edg∪{(l, τ, constX(C), l) | l ∈ Loc}. A hybrid
automaton A is simulated by a HIOA H = (B,CH , OH) if
XA = XB and the HIOA (Aτ (CH), CH , OH) simulates H ,
and vice versa.

If all variables are controlled, adding τ -transitions does
not affect the behavior of the hybrid automaton, as the τ -
transitions leave all variables unchanged. In the following
composition operator, the jump relations of synchronized
transitions result from the conjunction of the participating

transitions. Independent transitions, i.e., those that do not
synchronize, are allowed to change variables arbitrarily and
the variables over which their jump relation is not defined
are set to remain constant. This is non-compositional, and in
principle similar to the composition operator in [11].

Definition III.9 (Composition of HA). The parallel compo-
sition of hybrid automata A1 and A2 is the hybrid automaton
A = (Loc1 × Loc2, X,Lab1 ∪ Lab2, Edg ,Flow , Inv , Init),
written as A = A1||A2, such that X = X1 ∪X2 and
• ((l1, l2), a, µ, (l′2, l

′
2)) ∈ Edg with µ = {(v, v′) |

(v↓Xi
,v′↓Xi

) ∈ µi} iff for i = 1, 2,
– a ∈ Labi and (li, ai, µi, l

′
i) ∈ Edg i, or

– a /∈ Labi, l′i = li, and µi = constXi
(Zi), where

Z1 = X1\X2 and Z2 = X2\X1;

• Flow(l1, l2) = Flow1(l1)|X∪Ẋ ∩ Flow2(l2)|X∪Ẋ ;
• Inv(l1, l2) = Inv1(l1)|X ∩ Inv2(l2)|X ;
• Init(l1, l2) = Init1(l1)|X ∩ Init2(l2)|X .

Example III.1. Consider the hybrid automata Pi and Ci
shown in Fig 3. The system of N colliding pendulums is
modeled by the HA P1|| . . . PN ||C1|| . . . ||CN−1 if we add
the constraint x′i = xi ∧ x′i+1 = xi+1 to the transition of
Ci. This is necessary, since otherwise the variables xi and
xi+1 can take any value in the composition. Note that the
transition label τ and the stutter transitions are not shown.

Definition III.10 (Composition of HIOA). [4] The parallel
composition of HIOA H1 = (A1, C1, O1) and H2 =
(A2, C2, O2) is the HIOA H = (A,C1∪C2, O1∪O2), written
as H = H1||H2, where A is the parallel composition of A1

and A2 according to Def. III.9, but with Z1 = C1 \ C2 and
Z2 = (C2\C1). H1 and H2 are compatible if their sets of
controlled variables C1 and C2 are disjoint.2

The point of HIOA is that they make simulation and
bisimulation compositional, which means that any property
established between two automata still holds if they are
composed with another automaton

Proposition III.1. Let H1, H2 be comparable HIOA with
H1 �t H2. For any HIOA H3 compatible with H1,H2 holds
H1||H3 �t H2||H3. The same holds for bisimulation.

Example III.2. With the automata Pi and Ci shown in
Fig 3 we define HIOA HPi = (Pi, {xi, vi}, {xi, vi}) and
HCi = (Ci, {vi, vi+1}, {vi, vi+1}). Note that, in constrast
to Ex.III.1, the transition of Ci can change xi and xi+1

to arbitrary values. The system is modeled by the HIOA
HP1
|| . . . HPN

||HC1
|| . . . ||HCN−1

. Since xi is controlled in
HPi , the composition operator forces xi to remain constant in
the transition from Ci. The HPi and HCi are not compatible,
so compositionality does not hold. The behavior of vi in Pi
alone is not a subset of that in Pi||Ci since Ci adds jumps
that are not in Pi. For instance, let the initial state of P1 be

2We use controlled variables in a more relaxed fashion than in [4], [5],
where Z1 = C1, Z2 = C2. If H1 and H2 are compatible, which is required
for compositionality in any case, then C1 and C2 are disjoint and the two
definitions are identical.

bangi
(x′i ∈ R, v′i ∈ R)

xi + d ≤ xi+1

bangi
xi + d ≥ xi+1 ∧ vi > vi+1,
v′i = evi+1 ∧ v′i+1 = evi
x′i = xi ∧ x′i+1 = xi+1

(a) Shared Variable Model S (b) Modified HA model C̄i

Fig. 4. HIOA transformation of the HA model of Ex. III.3 using a SVM

x1 = 0 and v1 = 0. Computing the reachable states of HP1

will give the result that x1 and v1 are zero at all times. This is
obviously not the case if any of the other pendulums collide
with P1. Since the model is not compositional, analyzing
HP1

in isolation may give results that do not hold for the
whole system.

We now turn to the main claim of this section: that for
every non-compositional model there exists an equivalent
compositional model. To transform a composition of HA
into HIOA we need an explicit model of what happens to
shared variables. Recall that a variable can be controlled in
at most one of the HIOA, since otherwise they would not
be compatible. To circumvent this problem, we centralize
control of the variables in a single place. We let the variables
be uncontrolled in all of the HA, and add the following
HIOA, in which they are controlled.

Definition III.11. Let the shared variable model (SVM) of
a hybrid automaton A be the HIOA S(A) = (AS , XS , XS),
with AS = (LocS , XS , LabS , EdgS , FlowS , InvS , InitS),
• LocS = {l}, XS = XA, LabS = LabA,
• EdgS = {l, a, V (XA ∪ X ′A), l | a ∈ LabA \ {τ}} ∪
{(l, τ, constXS

(XS), l)}, FlowS = V (X ∪ Ẋ),
• InvS = l × V (X), InitS = l × V (X).

To avoid that the SVM blocks stutter transitions of the
HA, we require that the stutter transitions of the HA do not
modify the variables. Should a HA have a stutter transition
that does, one can simply replace every concerned transition
the stutter label with a label that is not in the alphabet of any
of the other HA. Intuitively, this enforces that any discrete
change in the variables is synchronized with a transition in
the SVM. In composition with the other automata, the SVM
does not modify the behavior:

Proposition III.2. Let A1, A2 be hybrid automata whose
stutter transitions do not modify the variables, i.e.,
(li, τ, µi, li) ∈ Edg i ⇒ µi = constXi(Xi). Let H1, H2

be the HIOA H1 = (Aτ1(∅), ∅, ∅), H2 = (Aτ2(∅), ∅, ∅). Then
A1||A2

∼=t H1||H2||S(A1||A2).

The proof is straightforward since any transition of
H1||H2 synchronizes with a transition of the SVM such that
the resulting jump relation is exactly that of A1||A2.

Example III.3. For an SVM transformation of the HA model
of the colliding pendulums given in Ex. III.1, we replace

ẋi = vi,
v̇i = −c(xi − x0,i)

bangi
(x′i ∈ R, v′i ∈ R)

xi + d ≤ xi+1

bangi
xi + d ≥ xi+1 ∧ vi > vi+1,
v′i = evi+1 ∧ v′i+1 = evi

(a) Pi
′′ (b) Ci

′′

Fig. 5. A compositional HIOA model of Ex. II.3 where the Shared Variable
Model is distributed over the Pi

′′

the stutter label τ in the transition of Ci by a new label
bangi, obtaining the HA C̄i and the SVM S shown in Fig.4.
Note that S has one transition for every value of i. Let
H ′Pi

= (P τi (∅), ∅, ∅) and H ′Ci
= (C̄τi (∅), ∅, ∅). The system is

modeled by the HIOA H ′P1
|| . . . H ′PN

||H ′C1
|| . . . ||H ′CN−1

||S.
To illustrate that the model is compositional, let the initial
state of P1 be x1 = 0 and v1 = 0. Contrary to Ex. III.1,
computing the reachable states of H ′P1

does not give finite
bounds on x1 and v1, since the stutter transition in H ′P1

can
change them to arbitrary values.

We end this section with a pendulum model that is similar
to the non-compositional HIOA model from Ex. III.1 but
achieves compositionality by including the transitions and
labels from the SVM of Ex. III.3.

Example III.4. Figure 5 shows a compositional variation
of the HIOA model from Ex. III.1. The system is mod-
eled by the HIOA H ′′P1

|| . . . H ′′PN
||H ′′C1

|| . . . ||H ′′CN−1
, where

H ′′Pi
= (P ′′i , {xi, vi}, {xi, vi}) and H ′′Ci

= (C ′′i , ∅, ∅). Here,
the Shared Variable Model is distributed over the H ′′Pi

by
including the transitions with label bangi in the H ′′Pi

.

IV. SEMI-EXPLICIT DAES IN SPACEEX

As we have seen in the previous sections, models of
control systems give rise to differential-algebraic equation
systems (DAEs). We now present the way we handle these
DAEs in SpaceEx. The support function-based reachability
algorithms in SpaceEx can handle dynamics of the form

ẋ = Ax+ u, x ∈ I, u ∈ U , (2)

where I is the invariant of the corresponding location of
the hybrid automaton. Both sets I and U are given by
conjunctions of linear constraints (equalities and inequalities)
on the respective variables. In the SpaceEx model format,
the set U is joined with I and both together are given as the
invariant. Syntactically, we have a model of the form

ẋ = Ây + b̂, y ∈ Q, (3)

where y consists of variables of x and of u and Q is given
by a conjunction of linear constraints. This model is brought
to the form (2) in the following preprocessing:

1) Let Y be the set of all variables in the automaton.
2) Find variables X with derivatives constrained in (3).
3) Let U = Y \X .

4) Split Â into matrices A,B, i.e.,
(
A B

)(x
u

)
= Ây.

5) Compute invariant and input set

I =
{
x
∣∣∣ ∃u :

(
x
u

)
∈ Q

}
, (4)

U =
{
Bu+ b̂

∣∣∣ ∃x :
(
x
u

)
∈ Q

}
. (5)

The latter step is problematic in that existential quantification
over sets of linear inequalities is of exponential complexity.
We can easily circumvent this problem thanks to the use of
support functions:

5.a Instead of I, use Î = Q. Our support function algo-
rithm handles the extra variables in the computation
with little overhead. It is based on computing the
reachable values of x by computing maximizers in a
set of template directions defined over X . Using Î
instead of I simply means that these computations are
taking place embedded in a higher dimensional space.

5.b Instead of U , use

Û =
{(

0 B
)(
x
u

)
+ b̂

∣∣∣ (xu) ∈ Q}. (6)

In the algorithm, we use only the support of U , i.e.,
we only compute maximizers of linear cost functions
over the set. The embedding with variables x incurs
only negligible overhead.

The above processing has a fundamental flaw: The set U
is constant over time, so any dependencies of u on x are
eliminated in step 5.

Example IV.1. The proportional state feedback controller is

u = −Kx. (7)

Applying existential quantification in (4) results in the dif-
ferential inclusion

ẋ = Ax+ u, u ∈ −B
(
K
0

)
Q,

which renders the model practically useless, since it cor-
responds to a model without feedback, with dynamics A
instead of A−BK.

To take into account the algebraic equations in a reacha-
bility algorithm based on (2) we must, as much as possible,
eliminate the dependecies of the algebraic variables on x.
Such dependencies may be introduced inadvertently via the
inequalities that define Q. Our elimination process must
therefore take the inequalities into account as well. This is
illustrated by the following example.

Example IV.2. Consider the system

ẋ = ax+ u1 − 10u2, −1 ≤ u1 ≤ 1,
0 = x+ u1 + 20u2, −α ≤ x ≤ α. (8)

If we ignore the inequalities, there is no way of telling
whether it is better to eliminate u1 or u2. Eliminating u1

in (8), we get u1 = −x− 20u2, and substituted into (8)

ẋ = (a− 1)x− 30u2, −1 ≤ x+ 20u2 ≤ 1, |x| ≤ α.
(9)

x

t

Fig. 6. Reachable states of Ex. IV.2 over time for two different choices of
eliminated algebraic variables, (9) shown light and (11) shown dark

By eliminating u1 we have introduced a dependency of u2

on x in the inequalities. When using a reachability algorithm
based on (2), via either (5) or (6), we obtain an input set U
with values

−α+ 1

20
≤ u2 ≤

α+ 1

20
, (10)

which is an overapproximation of the correct solution (9).
Eliminating u2 in (8), we get

u2 = − 1

20
u1 −

1

20
x,

which substituted into (8) yields

ẋ = (a+ 1
2)x+ 3

2u1, −1 ≤ u1 ≤ 1, |x| ≤ α.
(11)

Here, u1 is independent of x, so a reachability algorithm
based on (2) can compute the exact solution.

The reachable states computed by SpaceEx for both solu-
tions are shown in Fig. 6 for parameters a = 1

2 , α = 10, and
with initial condition x(0) = 2. As expected, (11) is much
more precise, even though it has unstable dynamics, while
(9) is stable.

To obtain a canonical form, we rewrite inequalities in Q
as equalities by introducing slack variables, plus we consider
that there might be auxiliary variables in Q that do not occur
in the ODE (even possibly arising from the specification). We
rewrite the system equations (3) as follows, where u refers
to non-state variables that influence ẋ, and v to all other
non-state variables:

ẋ = Ax+Bu+ b, (12)
0 = Cx+Du+ Ev + d, (13)
0 ≤ Fv. (14)

Our goal is to eliminate as much as possible the influence of
x in the second equation of (12). We distinguish three cases:

a) Case 1: If D is invertible, we can eliminate u:

ẋ = (A−BD−1C)x+ (b−BD−1d)−BD−1Ev. (15)

This may leave us with a dependency of x on v, but it is not
state-dependent and directly fits the form (2) with

ẋ = (A−BD−1C)x+ u∗, (16)
u∗ ∈

{
(b−BD−1d)−BD−1Ev

∣∣ Fv ≥ 0
}
. (17)

The proportional feedback controller (7) falls under case 1.

b) Case 2: If
(
D E

)
is invertible, we eliminate u,v:

ẋ =
(
A−

(
B 0

)(
DE

)−1C
)
x+b−

(
B 0

)(
DE

)−1d, (18)

0 ≤ −
(
0 F

)(
D E

)−1
(Cx+ d). (19)

While here we may end up with inequalities over x, they do
not involve u and v, so that they can be included in (2) as
part of the invariant I. Note that case 2 is distinct from case
1 if there are variables v, since D and

(
D E

)
can not both

be invertible at the same time.
c) Case 3: In the general case, we attempt to get rid of

as many elements in C as possible. Putting u and v together
in a single vector w, we start instead of (12)–(14) with

ẋ = Ax+Bw + b, (20)
0 = Dw + Cx+ d, (21)
0 ≤ Fw. (22)

We apply the Gauss-Joran algorithm to bring (21) into
reduced row-echelon form, turning as many columns of D
as possible into unit vectors (with only one nonzero element).
Then we split w into variables w′ with a unit column vector
in the transformed (21) and the remaining, denoted as w′′.
Splitting also the matrices accordingly, we get

ẋ = Ax+B′w′ +B′′w′′ + b,
0 = Iw′ +D′w′′ + C ′x+ d′,
0 = C ′′x+ d′′.
0 ≤ F ′w′ + F ′′w′′.

(23)

Eliminating w′ we get

ẋ = (A−B′C ′)x+ (B′′ −B′D′)w′′ + b−B′d′,
0 = C ′′x+ d′′.
0 ≤ −F ′C ′x+ (F ′′ − F ′D′)w′′ − F ′d′.

(24)

Example IV.3. The system from Ex. IV.2 falls neither under
case 1 nor case 2. We bring the equations to canonical form,
introducing slack variables e1, . . . , e4 for the inequalities:

ẋ = ax +u1−10u2,
0 = 1u1+20u2 +1x,
0 = 1u1 +1e1 −1,
0 =−1u1 +1e2 −1,
0 = +1e3 +1x−α,
0 = +1e4 −1x−α,
0 ≤ e1, 0 ≤ e2, 0 ≤ e3, 0,≤ e4.

(25)

We choose w′ =
(
u1 u2 e1 e3 e4

)T
, which leaves

w′′ =
(
e2

)
. Splitting the matrices accordingly we get

ẋ = (a+ 1
2

)x+ 3
2
e2 − 3

2
,

0 ≤ −1e2 +2
0 ≤ −1x +α
0 ≤ 1x +α
0 ≤ 1e2 0

This solution is equivalent to (9), which can be easily seen
after observing that the third line of (25) reads e2 = u1 + 1.
We obtain the same solution starting with any order of u1

and u2 in (25).

REFERENCES

[1] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in CAV, ser. LNCS, G. Gopalakrishnan
and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 379–395.

[2] O. L. Scott Cotton, Goran Frehse, “The SpaceEx modeling language,”
http://spaceex.imag.fr/, 2010.

[3] MATLAB version 7.5, Natick, Massachusetts: The MathWorks Inc.,
2007. [Online]. Available: http://www.mathworks.com/

[4] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theor. Comp. Science, vol. 138, no. 1,
pp. 3–34, 1995.

[5] G. Frehse, “Compositional verification of hybrid systems using sim-
ulation relations,” Ph.D. dissertation, Radboud Universiteit Nijmegen,
Oct. 2005.

[6] D. E. N. Agut, D. A. van Beek, and J. E. Rooda, “Syntax and semantics
of the compositional interchange format for hybrid systems,” J. Log.
Algebr. Program., vol. 82, no. 1, pp. 1–52, 2013.

[7] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model
checker for hybrid systems,” in CAV, ser. LNCS, O. Grumberg, Ed.,
vol. 1254. Springer, 1997, pp. 460–463.

[8] P. Fritzson, Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1. Wiley-IEEE Computer Society Press, 2003.

[9] P. I. Barton and C. C. Pantelides, “gPROMS - a combined discrete/-
continuous modelling environment for chemical processing systems,”
Simulation Series, vol. 25, no. 3, pp. 25–34, 1993.

[10] N. A. Lynch and M. J. Fischer, “On describing the behavior and
implementation of distributed systems,” Theoretical Computer Science,
vol. 13, no. 1, pp. 17–43, 1981.

[11] R. Alur, T. A. Henzinger, and P.-H. Ho, “Automatic symbolic verifi-
cation of embedded systems,” IEEE Trans. Soft. Engineering, vol. 22,
pp. 181–201, 1996.

[12] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems,” in Hybrid Systems, ser. LNCS, R. L. Grossman,
A. Nerode, A. P. Ravn, and H. Rischel, Eds., vol. 736. Springer,
1993, pp. 209–229.

[13] T. A. Henzinger, “The theory of hybrid automata,” in LICS’96, 1996.
[14] E. Ábrahám-Mumm, U. Hannemann, and M. Steffen, “Verification of

hybrid systems: Formalization and proof rules in pvs,” in ICECCS’01,
June 2001.

[15] N. A. Lynch, R. Segala, and F. W. Vaandrager, “Hybrid I/O automata,”
Information and Computation, vol. 185, no. 1, 2003.

