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1 Introduction

SpaceEx is a verification platform for hybrid systems. The goal is to verify
(ensure beyond reasonable doubt) that a given mathematical model of a hy-
brid system satisfies the desired safety properties. The basic functionality is
to compute the sets of reacheable states of the system. The main analysis
algorithm of SpaceEx is an implementation of the Le Guernic-Girard (LGG)
algorithm [2]. Classic reachability algorithms use operators whose computa-
tional cost is exponential in the number of continuous variables, which limits
them to systems with 3-5 continuous variables for nontrivial dynamics. The
operators of the LeGuernic-Girard algorithm are polynomial, and systems
with 200 variables and more have been analyzed that way. The version
of the LGG algorithm that is implemented in SpaceEx uses outer polyhe-
dral approximations to compute the image of discrete transitions, making it
scalable [I]. The STC algorithm is a recent enhancement of the LGG algo-
rithm that produces fewer convex sets for a given accuracy and computes
more precise images of discrete transitions. Based on the LGG scenario, the
reachable states over time (so-called flowpipes) are bounded with piecewise
linear approximations of the support function over time. The approxima-
tion can be made arbitrarily precise using just two parameters: the num-
ber of template directions and an error bound that is evaluated in each of
those directions. The image of discrete transitions is computed on polyhe-
dral overapproximations that are projections from space-time onto the state
space. The complexity (number of constraints) and number of polyhedra
is adjusted automatically so the given error bound is met. This makes the
clustering heuristics (commonly used with the LGG scenario) unnecessary
in most cases and gives more predictable results than the hit-or-miss success
rate of previous heuristics.

This document presents some experiments that compare the performance
of STC and LGG algorithms from a purely practical perspective. The com-
parison is not easy to do objectively. Notably, the error and tolerance mea-
sures for both algorithms differ. Both the accuracy of the final output and
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Figure 1: Flowpipe cover of a bouncing ball with template directions in the axis
directions (box directions), computed with tolerance value ¢ = 1.0. The outer
approximation of the LGG algorithm is shown red, that of the STC algorithm in
blue. The plot shows position (horizontal) over velocity (vertical)

the computation time should be taken into account. This is complicated by
the fact that both algorithms use an implicit internal representation (sup-
port functions) whose visualization is itself an overapproximation. Having
a precise graphical output can take more time than the actual reachability
computation. The reported computation times do not include the visualiza-
tion step. Note that some experiments have been carried out with protoype
versions, so performance results might be different from the latest release.

2 Illustrative Comparison: Bouncing Ball

In the following we consider the reachable states of a bouncing ball, for a
given number of jumps of the ball. We compare two versions: LGG and the
new proposed approach STC. Both have internal representations of sets that
are implicit. In LGG, this is a single support function per convex set. In
STC, it is a set of piecewise linear functions that describe the evolution of the
support function over time for a given set of template directions. In both
versions, an outer polyhedral approximation is used for the intersection.
In LGG, this means the outer hull of the template directions (here box
directions). In STC, this means finding a polyhedral cover of the internal
flowpipe approximation, which is then projected onto the state space. This
cover is constructed such that the minimum number of convex polyhedra is
returned that meets the given tolerance.

Figure shows the result for the reachable states for the first jump of
the ball, more precisely, the outer approximations covering the flowpipe. In
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Figure 2: Flowpipe cover of a bouncing ball with template directions in the axis
directions (box directions), computed with tolerance ¢ = 10=*. For a small toler-
ances, both show similar results but LGG computes 457 448 support function values
while STC only computes 966. The outer approximation of the LGG algorithm is
shown red, that of the STC algorithm in blue. The plot shows position (horizontal)
over velocity (vertical)

both cases, the template directions are given as the axis directions, so the
outer approximations are bounding boxes. For the STC algorithm, these are
sets of boxes in space-time (a box at every point in time) that are projected
down to the state space and therefore contain non-box constraints. Note that
this projection can be carried out cheaply using support functions. Before
the jump, LGG and STC more or less coincide. The jump takes place at
the guard x=0 (vertical line). The image of the jump is computed using
the outer approximation, so the box-shape of LGG introduces a large error
that propagates. If we add one more jump, shown in Fig. we see that
each of the three red boxes that intersect with the guard has spawned its
own flowpipe. For more jumps, this number increases quasi-exponentially,
so clustering sets is necessary to avoid stalling. From now on, we take in
LGG the convex hull of the states that can jump. That way, we avoid an
explosion in the number of sets for sure. But what will the approximation
error be? For LGG, the approximation error is so large the flowpipe goes to
infinity after only a few jumps.

We know that as the time step in LGG goes to zero, its outer approxima-
tion approaches that of STC the same way a Euler approximation approaches
a piecewise linear solution. The result for a small tolerance e = 10~4, shown
in Fig.[2] confirms this as the two approaches give similar results. But here
is an excerpt from the log of LGG, showing the result of the image compu-
tations of the discrete jumps:

00:00:00.088 adding convex hull of 10 polyhedra to result
00:00:00.842 adding convex hull of 16 polyhedra to result



00:00:01.733 adding convex hull of 36 polyhedra to result
00:00:03.280 adding convex hull of 82 polyhedra to result
00:00:06.223 adding convex hull of 184 polyhedra to result

LGG needs to cluster a progressively large number of sets — this grinds
progress eventually to a halt. As can be seen from the time stamp, compu-
tation time practically doubles with each jump. After each jump, the initial
set of the next flowpipe is the convex hull of up to 184 sets. The convex hull
is a “lazy” function — computing the support function of it actually means
computing the support of up to 184 sets and taking their maximum. In
consequence, the effort required per step is progressively increased. Despite
taking adaptive time steps and other performance tricks, LGG computes a
total of 457 448 support function values for the case shown in Fig.

In STC, on the other hand, computes a total of 966 support function
values. New support values are only computed where a linear interpolation is
not precise enough. Note that both approaches take about the same minimal
time step to achieve the desired accuracy (LGG: 0.0052, STC: 0.0048). The
total computation time in LGG is 6.3s, in STC it is 0.7s. Computing more
jumps widens this gap even more.

Another reason why the number of evaluations is reduced in STC is
because the time steps are adapted separately for each template direction.
The flowpipe is represented internally by an interval-valued piecewise linear
function over time. The real solution is known to lie inside the interval.
The error of the function is the width of the interval, and it decreases each
time an additional breakpoint is computed for the function. To optimize
performance, the computation is done by refinement: points are added until
the error falls below the given tolerance. A closer look shall illustrate this
point. For the tolerance e = 10~* given above, the computed breakpoints
per direction after the first jump show in the log as follows (note that one
support value can yield several breakpoints):

00:00:00.148 computing evolution in direction [x=1,v=0]
00:00:00.260 with 8193 points

00:00:00.260 computing evolution in direction [x=-1,v=0]
00:00:00.280 with 1025 points

00:00:00.280 computing evolution in direction [x=0,v=-1]
00:00:00.280 with 2 points

00:00:00.280 computing evolution in direction [x=0,v=1]
00:00:00.281 with 2 points

Recall that the trajectories of the bouncing ball in free fall are
z(t) = x(0) — 0.5t%, v(t) = v(0) —t.

The evolution of the support function in v-direction is therefore a straight
line. The STC scenario computes the first and the last point on the line,
realizes that it has computed these with error zero, and stops without adding
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Figure 3: Bounds on the evolution of z and v over time for the first flowpipe,
computed with tolerance value ¢ = 107*. The inner bounds (values definitely
reachable) are shown in green, outer bounds (maybe reachable) are shown in red
(barely visible at this high accuracy)

further points. We can plot these evolutions for the axis directions to obtain
an envelope of the values of each variable over time: The bound on the
support function in the z-direction provides an upper bound on the variable
x over time, while the bound in the negative z-direction provides a (negated)
lower bound on z.

Figure [3]shows these evolutions for the flowpipe after the first jump. The
inner bound of the variable is shown in green, these are the values we know
it definitely takes at some point. In red, we have the outer bound, which
are the values the variable might take. If only green and no red is visible, it
means that both coincide. Note that the error of the inner bound is measured
per jump, however, so it does not give any globally valid information about
what values are actually taken. The shown evolution for = (position) has
8193 points on the upper and 1025 points on the lower bound. For v, both
upper and lower bound consist of 2 points each.

These evolution plots are natural extensions from simulation plots to
sets, and could given useful feedback to modelers and verifiers. Note that
there is one plot for every computed flowpipe, so one would need a good
way of navigating between them. Compared to state-space plots, they are
surprisingly accurate.

3 Filtered Oscillator

The filtered oscillator is a parameterized benchmark, in which the number
of continuous variables can be varied [I]. A two-dimensional switched linear
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Figure 4: Flowpipe cover of a filtered oscillator with 34 continuous state variables,
computed with tolerance value ¢ = 0.01. The template directions are the axis
directions (box directions). The outer approximation of the LGG algorithm is
shown red, that of the STC algorithm in blue, and in green is shown the STC
algorithm with convex hull clustering similar to LGG. The plot shows oscillator
state variable z (horizontal) over output variable z (vertical)

oscillator is connected to an n-th order filter, so that the system has n +
2 continuous variables. In the following we will compare scalability and
precision of LGG and STC on this example. Note that the behavior of the
example changes with n: the filtered output converges slower to the limit
cycle. As a consequence the analysis algorithm takes more iterations to find
a fixed point, even if all other parameters are kept equal.

All instances of the filtered oscillator require some kind of clustering,
since the first discrete state change involves dozens to hundreds of the convex
sets that cover the flowpipe. This example is fairly robust with respect to
the clustering algorithm used, and both taking the convex hull as well as
taking the template hull of the sets gives acceptable results for the LGG
algorithm (template hull being faster). The STC algorithm on the other
hand choses itself the number of sets necessary to meet the given accuracy.
For the comparison, we have also included a version of STC with convex
hull clustering.

Figure [5] shows a projection of the reachable states of the 34-variable
filtered oscillator to the oscillator state variable  and the output variable
z. Three algorithms are shown: The outer approximation of the LGG algo-
rithm, that of the STC algorithm, and for purposes of comparison the STC
algorithm with convex hull clustering similar to LGG. The LGG with convex
hull clustering takes 5.8s, STC with convex hull clustering takes 6.3s and
standard STC takes 11.6s. For a tolerance of € = 1072, the STC algorithm
is about twice as slow since it produces 2 convex sets at the first transition,
which then propagate without further splitting as two flowpipes until termi-
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(a) LGG, e = 107" (b) STC, ¢ = 1073 (c) 2000 simulations

Figure 5: Flowpipe cover of a filtered oscillator with 34 continuous state variables,
comparing LGG and STC for same computation time, plus simulation runs for
reference. The template directions are the axis directions (box directions). The
plot shows oscillator state variable = (horizontal) over output variable z (vertical)

nation. In total, STC carries out 26 flowpipe computations, while the LGG,
which due to clustering only propagates one set, carries out 13. However, if
we measure the accuracy as the output amplitude and the simulation runs
in Fig. as reference, the STC algorithm terminates with a total error
of 7%, while STC with convex hull clustering has a total error of 14%, and
LGG with convex hull clustering has a total error of 31%. For a tolerance of
e = 107, LGG produces in 80.8s a total error of 4.4%, see Fig. With
e = 1073, STC produces in 76.2s a total error of 2%, see Fig. covering
the first jump with 7 convex sets.
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