
Flowpipe-Guard Intersection for
Reachability Computations with Support

Functions ?

Goran Frehse ∗ Rajarshi Ray ∗

∗Université Grenoble 1, Verimag,
Centre Equation - 2, Avenue de Vignate, 38610 Gieres, France

(e-mail: goran.frehse,rajarshi.ray@imag.fr).

Abstract: Recently, efficient reachability algorithms for hybrid systems with piecewise affine
dynamics have been developed. They achieve good scalability and precision by using support
functions to represent continuous sets. In this paper, we propose an improvement of these
algorithms that reduces the overapproximation error of the image computation of discrete
transitions (jumps). The critical operation of this image computation is the intersection of the
flowpipe with the guard sets of the transitions, since intersection is in general a difficult operation
when using support functions. We propose an approach for computing the intersection of the
flowpipe with polyhedral guards up to arbitrary accuracy. We reduce computing the support
function of the intersection of a single convex set with a guard to a convex minimization problem.
To solve it, we present a custom-tailored sandwich algorithm. The intersection of a flowpipe
(a sequence of convex sets) with a guard reduces to a set of such minimization problems.
Where possible, we use branch-and-bound techniques and solve these minimization problems
simultaneously to avoid redundant computations. Experimental results illustrate the gain in
accuracy and the performance of the algorithms.

Keywords: Hybrid automata, support functions, reachability, convex piecewise linear
functions, minimization.

1. INTRODUCTION

A scalable technique for computing the reachable states
for hybrid systems with piecewise affine dynamics was pro-
posed by Le Guernic and Girard [2009] and later improved
by Frehse et al. [2011]. Simply put, its efficiency hinges on
computing an overapproximation of the reachable states in
the form of template polyhedra. Here, template polyhedra
are polyhedra whose facet normals consist of user-defined
template directions. One of the strong points of the al-
gorithm is the precision of time elapse operator. At each
application of the operator, the approximation error can be
fixed to an arbitrarily small value and does not accumulate
with time if the ODEs are deterministic. While restricting
the approximation to few template directions makes this
approach scalable, it can result in a large approximation
error when computing the image of a discrete transition.

To illustrate this phenomenon, consider the example of a
bouncing ball, for whom we compute an overapproxima-
tion of the reachable states as shown in Fig. 1(a). Starting
from an initial set of states X0, our algorithm computes a
cover of the flowpipe in the form of boxes. As the ball hits
the ground at x = 0, its state jumps from negative velocity
v to positive velocity. For reasons of efficiency, we are
bound to compute this jump using the box approximation,
which incurs a significant error. This can be seen from the
fact that the next flowpipe is significantly larger after the
? This work was supported in part by the EU project MULTIFORM
under grant INFSO-ICT-224249.

first jump, and even larger after the second jump. Indeed,
the states computed after further jumps eventually diverge
to infinity. By adding the right template directions, we
obtain a much more precise result. Figure 1(b) shows the
approximation with automatically synthesized template
directions for the first two flowpipes. By adding only a few
critical directions, the approximation error induced by the
jumps has become negligible.

The accuracy of the flowpipe-guard intersection has there-
fore considerable impact on the quality of the computed
reachable set. An approach to more accurately compute
the flowpipe-guard intersection for hyperplanar guards was
proposed by Le Guernic and Girard [2009], see also Le
Guernic [2009, p.114–122]. Their algorithm computes the
intersection of a convex set, represented by its support
function, with a single hyperplane. This reduces the in-
tersection to the minimization of a unimodal function,
for which they propose a dichotomic search and a golden
section search algorithm, for more details see Sect. 2.3.

In this paper, we revisit this approach, generalizing it from
hyperplanes to halfspaces and polyhedra. Using a different
formulation of the problem, we reduce the intersection to
minimizing a convex function, which allows us to compute
the optimality gap and thus obtain a result of guaranteed
accuracy. In the setting of our reachability algorithm,
the minimization function is the support function of a
polyhedral set and therefore piecewise linear. For this
class, our minimization algorithm terminates in finite



X0

flow

jump

position x

speed v

(a) Using outer approximations for the intersection with the guard
set (x = 0), the approximation error increases with each jump, to the
point where the computed set diverges when more jumps are added

X0

flow

jump

position x

speed v

(b) Our accurate intersection algorithm adds template directions
when required by subsequent jump computations. Here, the flowpipe
after the second jump has no additional template directions since the
third jump has not yet been computed

Figure 1. Reachable state computation for two jumps
(discrete transitions) of a bouncing ball, without
and with accurate intersection, all other parameters
being equal. The user-defined template directions
are the axis directions, resulting in a bounding-box
overapproximation

number of steps for any desired error bound including
zero. Similar to Le Guernic [2009], we use branch-and-
bound techniques and solve these minimization problems
simultaneously to avoid redundant computations. In the
case of polyhedra, the exact solution leads to a multi-
dimensional optimization problem. As an alternative with
lower complexity, we propose a per-constraint intersection
to which branch-and-bound techniques are readily applied.

Our minimization algorithm is similar to sandwich algo-
rithms used in literature mainly for approximation, see
Burkard et al. [1991] and references therein. While the lit-
erature on minimizing piecewise linear functions is mostly
concerned with convergence properties, our focus is on the
result for a very small number of function evaluations,
since in our application each function evaluation is rather
costly.

In the next section we discuss the problem of intersect-
ing a hyperplane, halfspace or polyhedron with a convex
set represented by its support function. We present our
minimization algorithm and compare its performance for

hyperplane intersection to the golden section search pro-
posed by Le Guernic and Girard [2009]. In Sect. 3, we
apply this technique to the flowpipe-guard intersection
problem. Since our flowpipe approximation consists gener-
ally of a large number of convex sets, we discuss efficiency
improvements such as branch-and-bound techniques. The
performance of our algorithm is illustrated by experimen-
tal results in Sect. 4.

2. INTERSECTING A CONVEX SET WITH A
POLYHEDRON USING SUPPORT FUNCTIONS

2.1 Representing Sets with Support Functions

A convex set can be represented by its support function,
which attributes to each direction in Rn the signed dis-
tance of the farthest point of the set to the origin in that
direction. Computing the value of the support function for
a given set of directions, one obtains a polyhedron that
overapproximates the set. A halfspace H ⊆ Rn is the set
of points satisfying a linear constraint

H =
{
x | aTx ≤ b

}
,

where a = (a1 · · · an) ∈ Rn and b ∈ R. A polyhedron P is
the intersection of a finite number of halfspaces

P =
{
x
∣∣∣ m∧
i=1

aT

ix ≤ bi
}
,

where ai ∈ Rn and bi ∈ R. A polytope is a bounded
polyhedron. The convex hull CH(X ) of a set X ⊆ Rn is

CH(X ) =
{ m∑
i=1

λivi

∣∣∣ vi ∈ X , λi ≥ 0,

m∑
i=1

λi = 1
}
.

Given a matrix M ∈ Rn×n, MX = {Mx | x ∈ X}. The
Minkowski sum of sets X1 and X2 is X1 ⊕ X2 = {x1 +
x2 | x1∈X1, x2∈X2}.
The support function of a closed and bounded convex set
X ⊆ Rn attributes to a direction vector ` ∈ Rn the real

ρX (`) = max{`Tx | x ∈ X}.
We use the following operations with support functions:

ρCH(X1∪X2)(`) = max (ρX1
(`), ρX2

(`)) , (1)

ρMX (`) = ρX (M T`), (2)

ρX1⊕X2
(`) = ρX1

(`) + ρX2
(`). (3)

Given a set of directions L = {`1, . . . , `K}, we have the
polyhedral outer approximation

dXeL =
{
x
∣∣∣ ∧
k=1,...,K

`Tkx ≤ ρX (`k)
}
. (4)

Lemma 1. For all L, X ⊆ dXeL. Given a polyhedron P
and L such that {a1, . . . , am} ⊆ L, P = dPeL.

When we consider the set L as fixed and given, we speak
of template directions, and call the outer approximation in
those directions the template hull. The template hull of a
set of convex sets is the template hull of their convex hull.
It is easy to compute by applying (1).

2.2 Intersection with a Halfspace or Hyperplane

We now consider the intersection of a closed and bounded
convex set X with a halfspace or a hyperplane. Later we



¸¸j
¸i

fij
{(¸)f(¸i)

f(¸)

f(¸j)

0

Figure 2. The straight line through two points on a convex
function f(λ) is a lower bound on f(λ) to the left and
to the right of those two points

extend these results to polyhedra. As noted by Le Guernic
[2009], the support function of the intersection of compact
convex sets X and Y can be reduced to the minimization
problem

ρX∩Y(`) = inf
v∈Rn

(ρX (`− v) + ρY(v)). (5)

If Y is a halfspace or a hyperplane, we show that (5)
simplifies to a univariate minimization problem as follows.

Lemma 2. Consider the halfspace H = {x | aTx ≤ b} and
the hyperplane H′ = {x | aTx = b}, and let

f(λ) = ρX (`− λa) + λb. (6)

Then we have

ρX∩H(`) = inf
λ∈R≥0

f(λ), ρX∩H′(`) = inf
λ∈R

f(λ). (7)

Note that f(λ) is convex, since every support function is
convex and the sum of two convex functions is convex. If X
is a polyhedron, (7) is a parametric linear program (LP),
with λ as parameter. Consequently, f(λ) is continuous,
convex, piecewise linear function, see Dantzig and Thapa
[2003].

Lemma 3. We note the following facts about the intersec-
tion with a halfspace H:

(1) X ∩H = ∅ iff −ρX(−a) > b.
(2) If ρX (a) ≤ b, then ρX∩H(`) = ρX (`).
(3) f(λ)→ −∞ as λ→∞ iff X ∩H = ∅.
(4) If X ∩H 6= ∅, then f(λ) ≥ −ρX (−`).

2.3 A Sandwich Algorithm for the Direct Minimization of
Convex Functions

We have the following sandwich algorithm to find a se-
quence of λi that converges towards the minimum of f(λ).
For each λi, we compute the corresponding value f(λi),
and we call (λi, f(λi)) a sample of f(λ). We iteratively
compute a function f−(λ) that is a lower bound on f(λ),
updating it with each newly computed sample.

The source of our lower bound function is the following
property of convex functions, which is illustrated by Fig. 2.
Given two samples (λi, f(λi)) and (λj , f(λj)), λi < λj , the
convexity of f(λ) implies that the straight line through
them, described by

f−ij (λ) =
f(λj)− f(λi)

λj − λi
(λ− λi) + f(λi), (8)

is a lower bound on f(λ) to the left and right of the two
points, i.e., for all λ ≤ λi and λ ≥ λj , and an upper bound

−1 0 1

−1

0

1

x

y

(a) The polytope P and its intersection with the hyperplane H′

0.4 0.5 0.6 0.7 0.8

0.75

0.8

λ

f(λ)

(b) To compute ρX∩H′ (`), we minimize f(λ). The function and the
samples chosen by the Lower Bound search are shown for ` = (x =
0, y = 1)

Figure 3. Intersection of the hyperplane H′ = {x+ y = 0}
with a polytope P with 15 facets

between them, i.e., for λi ≤ λ ≤ λj . We combine (8) for
all known samples (λi, f(λi)) to the following lower bound
function, which is defined pointwise over λ:

f−(λ) = max
(
−∞, max

λ≤λi<λj

f−ij (λ), max
λi<λj≤λ

f−ij (λ)
)
. (9)

Given an error threshold ε ≥ 0, our algorithm computes
an interval [r−, r+] such that

r− ≤ min
λ∈R≥0

f(λ) ≤ r+ and r+ − r− ≤ ε.

Since the algorithm chooses the next sample based on the
current lower bound, we call it Lower Bound search. It
proceeds as follows, see also Fig. 3:

(1) Let i = 0, λi = 0, r− = −∞, r+ = +∞.
(2) Bracket the minimum by adding samples until a

turning point is found:
(a) Until f(λi−1) ≤ f(λi−2) and f(λi−1) ≤ f(λi),

increase the distance between λi exponentially.
(3) Compute f(λi) and tighten the interval bounds

r− ← infλ∈R≥0 f−(λ), r+ ← min(r+, f(λi))
(4) Choose the next sample at the lowest point of f−(λ)

unless already visited:
(a) Let λi+1 ← arginfλ∈R≥0(f−(λ)).
(b) If λi+1 ∈ {λ0, . . . , λi}, let λi+1 ← (λi+1 + λj)/2,

where λj is an appropriate neighboring sample.
(5) If r+− r− > ε, let i← i+ 1 and go to (3). Otherwise

terminate and return the interval [r−, r+].

If f(λ) is piecewise linear with a finite number of pieces,
the above algorithm terminates with a finite number of
steps for every ε ≥ 0. This is the case if X is a polytope.



Table 1. Average performance of Lower Bound search
(exact solution) vs GSPD (fixed to 14 function evalu-

ations), intersecting a hyperplane with a polytope

Lower Bound GSPD

facets samples err time(ms) samples err×10−4 time(ms)

4 6.741 0 0.15 14 8.197 0.71

8 8.523 0 0.34 14 3.200 0.82

16 9.611 0 0.50 14 1.612 1.27

24 10.222 0 0.74 14 1.111 1.80

Our implementation contains further steps to reduce the
number of samples and to account for floating point errors.
We refer the reader for further details to Ray and Frehse
[2011].

Related Work : To the best of our knowledge, this is
the first published solution of the intersection with a
halfspace or polyhedron. It is derived from previous work
on the intersection with a hyperplane by Le Guernic and
Girard [2009]. There, computing the support function of
the intersection is reduced to a univariate minimization
problem that is derived geometrically. Its parameter θ ∈
(0, π) describes the angle between the sample direction and
the normal vector of the hyperplane H′ = {x | aTx = b}:

ρX∩H′(`) = inf
θ∈(0,π)

ρX (` sin θ + a cos θ)− b cos θ

sin θ
. (10)

While (10) has the advantage over (7) that its argument
ranges over a finite interval, its cost function is only
known to be unimodal instead of convex. We refer to the
approximate solution of (10) by golden section search as
Golden Section Search in the Polar Domain (GSPD).

Experiments: The following experiments shall illustrate
the performance of Lower Bound search in comparison
with GSPD. The results in this paper were obtained on
a standard x86 machine with 32bit operating system. To
measure the computation error

err = r+ − inf
λ∈R

f(λ),

we compare the different output values to the result of the
Lower Bound search for ε = 0.

Table 1 compares the support function computation of
the intersection between a regular n-polyhedron in two
dimensions with the line x cos θ + y sin θ = 0 in the
direction [x = 0, y = 1]. It shows the averaged results
for 1000 uniformly distributed θ ∈ [0, π] by GSPD and
our Lower Bound search. Note that the error of GSPD
decreases as the number of facets increases. The reason is
that the function becomes flatter near the minimum for a
larger number of facets. Hence for a fixed interval in the
function domain bracketing the minimum, the difference
between the minimum and the upper bound decreases.

Table 2 compares the intersection between a regular n-
polyhedron with the line x cos θ + y sin θ = 0 in the
direction [x = 0, y = 1]. It shows the averaged results for
1000 uniformly distributed θ ∈ [0, π], where the number of
samples (function evaluations) has been fixed to 6.

Remark 1. In Table 2 the computation times differ even
though the same number of samples is computed for both

Table 2. Average performance of Lower Bound search
vs GSPD, intersecting a hyperplane with a polytope for

a fixed number of function evaluations (6 samples)

Lower Bound GSPD

facets opt. gap err time(ms) err time(ms)

4 0.0338614 0.0285933 0.16 0.0351516 0.25

8 0.0274455 0.0107857 0.10 0.0228235 0.32

16 0.0298651 0.0063944 0.28 0.0156476 0.51

24 0.0302147 0.0044049 0.47 0.0131288 0.98

2 4 6 8 10 12 14 16

10−12

10−8

10−4

100

samples

max. error
avg. error

Figure 4. Approximation error over the number of samples
for the intersection of random halfspaces with random
polytopes with 16 facets

LB search and GSPD. Indeed the computation time of a
sample is data as well as state dependent. In particular, the
LP solver computing the support function keeps its state
between calls. A sample can therefore be computed faster
if its optimal solution for the corresponding direction is
close to the one computed in the previous call.

Figure 4 shows the approximation error of the intersection
with a halfspace as a function of the number of samples
taken. We measure the absolute error over 10000 random
instances of a polytope with 16 facets intersected with
a halfspace. The polytope and the intersection are by
construction nonempty and the halfspace is nonredundant.
After 17 samples, both maximum and average error are
below 10−13, which is about as close as we expect given
machine precision.

2.4 Intersection with a Polyhedron

Since a polyhedron is an intersection of halfspaces, we can
apply (7) repeatedly to obtain the support function of the
intersection of a set X with a polyhedron P:

Lemma 4.

ρX∩P(`) = inf
λ∈Rm,λ≥0

ρX (`−
∑
i

λiai) +
∑
i

λibi. (11)

This is a convex minimization problem over m variables,
where m is the number of constraints in P.

In our implementation, we compute the intersection with
each halfspace separately, which allows us to apply the
results from the previous section. We intersect X with each
halfspace of P separately, and combine the results in the
approximation

ρX∩P(`)+ = min
i=1,...,m

ρX∩{aT
i
x≤bi}(`). (12)

Since X ∩ P is contained in all of the sets X ∩ {aT
ix ≤ bi},



ρX∩P(`) ≤ ρX∩{aT
i
x≤bi}(`).

Consequently, ρX∩P(`) ≤ ρX∩P(`)+, so we are sure to
obtain an overapproximation. An outer approximation
computed with ρX∩P(`)+ may be non-empty even though
X ∩ P is empty.

3. FLOWPIPE-GUARD INTERSECTION

We now apply the results from the previous section in the
reachability computation of a hybrid system. Since the
details of the reachability algorithm have been reported
elsewhere and are not essential for the results of this paper,
we provide a brief summary and refer the reader to Frehse
and Ray [2009], Frehse et al. [2011].

3.1 Hybrid Automata and Reachability

We consider hybrid systems modeled according to Alur
et al. [1995] by a hybrid automaton

H = (Loc, Inv ,Flow ,Trans, Init).

It has a set of discrete states Loc called locations. Each
l ∈ Loc is associated with a set of differential equations (or
inclusions) Flow(l) that defines the time-driven evolution
of the continuous variables. A state s ∈ Loc×Rn consists
of a location and values for the n continuous variables.
A set of discrete transitions Trans defines how the state
can jump between locations and instantaneously modify
the values of continuous variables. A jump can take place
when the state is inside the transition’s guard set, and the
target states are given by the transition’s assignment. The
system can remain in a location l while the state is inside
the invariant set Inv(l). All behavior originates from the
set of initial states Init .

In this paper, we consider Flow(l) to be continuous dy-
namics of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (13)

where x(t) ∈ Rn is an n-dimensional vector, A ∈ Rn ×Rn
and U ⊆ Rn is a closed and bounded convex set. Transition
assignments are of the form

x′ = Rx+ w, w ∈ W, (14)

where x′ ∈ Rm the values after the transition,R ∈ Rm×Rn
is the assignment map, and W ⊆ Rn is a closed and
bounded convex set of non-deterministic inputs.

We compute the reachable states by recursively computing
the image of the initial states with respect to time elapse
and discrete transitions until a fixpoint is reached. In the
next two sections, we discuss how we compute both images.

3.2 Image Computation of Time Elapse

In a given location, the states reachable from an initial set
X0 by time elapse are referred to as the flowpipe of X0.
We use the approximation reported by Frehse et al. [2011]
and compute a sequence of closed and bounded convex sets
Ω0, . . . ,ΩN that covers the flowpipe starting from X , with
convex inputs U . We denote this operation by

(Ω0, . . . ,ΩN ) = postc (X ,U) . (15)

Each Ωi is the result of convex hull and Minkowski sum
operations on polytopes. So Ωi is by construction a poly-

tope, but such that computing its constraint representa-
tion would be prohibitively expensive. Its support func-
tion can, however, be computed efficiently for any given
direction. The computation of the sequence Ωi amounts
to a symbolic integration of the ODE (13), so the values
of Ωi depend on the values of Ωi−1, etc. This gives us the
following limitation, which will become an important when
we consider intersections:

Assumption 1. To compute ρΩi
(`), we also need to com-

pute ρΩj
(`) for j = 0, . . . , i− 1.

There is a partial remedy to this problem. Consider the
case where we are interested in computing a subsequence
of the flowpipe approximation Ωi, say for i ∈ [c, d]. This
could be, e.g., sets that may take a transition. Under
Assumption 1 this requires us to compute the d + 1 sets
with i ∈ [0, d]. We can reduce this computational burden
as follows. The sequence Ωi is constructed such that each
set covers the flowpipe over a known time interval [ti, ti+1].
We decompose the system into its autonomous dynamics
(U = ∅) and its input dynamics (X = ∅). Recall that for
autonomous dynamics, the set of states reached at exactly
time tc is Xtc = eAtcX . Starting the flowpipe computation
for the autonomous dynamics from t = tc instead of t = 0,
we end up with fewer sets to compute. Let

(Ωxc , . . . ,Ω
x
d) = postc

(
eAtcX , ∅

)
, (16)

(Ωu0 , . . . ,Ω
u
c , . . . ,Ω

u
d) = postc (∅,U) , (17)

such that Ωxi and Ωui cover the respective flowpipe on the
same time interval [ti, ti+1]. Then using the superposition
principle we have that Ωxi ⊕ Ωui covers the flowpipe of X
and U on the time interval [ti, ti+1]. This means we only
need to compute the d − c + 1 sets of (16). While (17)
still requires the computation of d+ 1 sets, the set U is in
practice often simple, e.g., a hyperbox, so that its support
function can be computed much quicker than that of X .

3.3 Image Computation of Discrete Transitions

The main concern of this paper is to efficiently and
accurately compute the image of the discrete transitions.
Let G be the guard set of the transition, I− the invariant of
the source location, I+ the invariant of the target location,
and let the transition assignment be (14). The image of a
set X with respect to the transition is

postd (X ) =
(
R
(
X ∩ G ∩ I−

)
⊕W

)
∩ I+. (18)

We assume G,I−,I+ to be polyhedra and assume that
the set of template directions L contains the normal
vectors of the constraints of these polyhedra. To make the
intersection of the support function object X and G,I−,I+

scalable, one can compute the outer approximation before
the intersection operation, as in Frehse et al. [2011]. For
lack of a better term, we call this the standard discrete
image operator in this paper:

poststdd (X ) =
⌈
R
(
dXeL ∩ G ∩ I

−)⊕W⌉
L
∩ I+. (19)

Since all operators that make up postd (X ) are monotone,

postd (X ) ⊆ poststdd (X ) . (20)

Note that if R is invertible and W is deterministic (a
point), the outermost outer approximation is not necessary
since the resulting polyhedron can be computed efficiently
with exact methods. With the intersection operator pro-



X

I+

p̂ostd (X )

without I∗

Figure 5. The image of X using the approximation operator (23),
with the axis directions as template directions. Here, I−= G =
Rn, R = I,W = 0, so I+ = I∗. Due to the intersection with
the pre-image of the target invariant, I∗, the result of (23)
(shown in thick red) is considerably more accurate than the
same approximation without I∗ (shown shaded gray)

posed in this paper, we aim at increasing the precision by
computing instead of poststdd (X )⌈

R
(
X ∩ G ∩ I−

)
⊕W

⌉
L
∩ I+. (21)

To further improve the accuracy of this approximation, we
include the pre-image of the target invariant as follows.
This can lead to substantial improvements, as shown in
Fig. 5. Let the target invariant be

I+ =
{
x
∣∣∣ m∧
i=1

āT

ix ≤ b̄i
}
.

An overapproximation of the pre-image of I+ with respect
to (14) is given by

I∗ =
{
x
∣∣∣ m∧
i=1

āT

iRx ≤ b̄i + ρW(−āi)
}
. (22)

Lemma 5. (RX ⊕W) ∩ I+ ⊆ R(X ∩ I∗)⊕W.
Equality holds if W = {w}.

We obtain our image operator

p̂ostd (X ) =
⌈
R
(
X ∩ G ∩ I− ∩ I∗

)
⊕W

⌉
L
∩ I+. (23)

With Lemmas 1 and 5, it is straightforward to show that
this is a tight overapproximation in the following sense:

Lemma 6. postd (X ) ⊆ p̂ostd (X ).

If W = {w}, then p̂ostd (X ) = dpostd (X )eL ∩ I+.

Note that G, I−, I∗ frequently contain redundant con-
straints and have matching inequalities that can be sim-
plified to equality constraints. Let G∗ = G ∩ I− ∩ I∗ be
simplified this way. The result of the operator (23) is a
polyhedral outer approximation. Recalling its definition
from (4), it involves computing for each ` ∈ L the support

ρR(X∩G∗)⊕W(`) = ρX∩G∗(R
T`) + ρW(`), (24)

which we obtain exactly or approximately through mini-
mization as in Sect 2.4. In the next section, we discuss how
to do this efficiently for flowpipes.

3.4 Intersecting a Flowpipe with a Halfspace/Hyperplane

In our reachability algorithm, we need to apply the discrete
image operator from the previous section to the flowpipe
approximation Ω0, . . . ,ΩN , where N is possibly very large.
For now we assume that the invariants and the guard are
such that G∗ = G ∩ I− ∩ I∗ is the halfspace {āTx ≤ b̄}.

The extension to hyperplanes is straightforward, as only
the domain of the parameter λ changes in (7).

According to (23), the image is nonempty only for Ωi
where Ωi ∩ G∗ is nonempty. So with Lemma 3, we can
limit ourselves to Ωi with indices in

Ijump = {i | −ρΩi(−ā) ≤ b̄}. (25)

The result of the discrete image computation is⋃
i∈I

p̂ostd (Ωi) . (26)

According to (24), we need to compute for each p̂ostd (Ωi)
the support ρΩi∩G∗(`) for all ` ∈ RTL. Applying the
approach from Sect 2.4, this involves minimizing for each
Ωi an instance of (6), i.e.,

f i(λ) = ρΩi
(`− λā) + λb̄. (27)

Recall that according to Assumption 1, computing ρΩi(`)
requires computing ρΩj (`) for j = 0, . . . , i − 1. Therefore

running a minimization algorithm on f i(λ) also produces
samples of f j(λ), j = 0, . . . , i − 1. These samples can be
used to improve the estimate of the minimum of f j(λ). In
addition, one can aim at choosing the next λ such that as
many of these estimates as possible benefit from the new
sample.

Our algorithm proceeds as follows to compute the min f i(λ)
up to a given error ε ≥ 0:

(1) We start with a work list Iwork = Ijump , and a first
sample at λnext = 0.

(2) Compute ρΩi
(`− λnext ā) for i = 0, . . . ,max(Iwork ).

(3) Update bounds on minima and requests of next λ for
each f i(λ): (ri−, r

i
+, λ

i
next) for i ∈ Iwork

(4) λnext = select({λinext}i)
(5) Keep only problems on work list whose bounds exceed

error: Iwork = {i | ri+ − ri− > ε}.
(6) If Iwork 6= ∅, go to (2).

The output of the algorithm are the ri+, i.e., an upper

bound on the minimum for each f i(λ). The funtion select
chooses one of the candidates λinext for the next sampling
point. We consider picking the first, the last, the median
and a random candidate.

Clustering : Computing the one-to-one image of the sets
covering the flowpipe, as in (26), can have the devastating
effect of increasing the number of convex sets exponentially
with the search depth. To avoid an explosion in the number
of sets and gain efficiency, we compute the convex hull of
subsets of these sets instead. This is referred to as convex
hull clustering, for details see Frehse et al. [2011]. We
now discuss how to compute the support function of these
clusters efficiently using a branch-and-bound approach.

Let I0, . . . , IK be the maximal connected subsets of Ijump

i.e., each Ij is the set of indices of a connected subsequence
of Ωi that can take the transition. We compute the outer
approximation of the convex hull of these sets,

Yk = CH
(⋃

i∈Ik
Ωi
)
. (28)

The final result is the outer approximation of the image of
the discrete transition,

Zk = p̂ostd (Yk) . (29)



With (1),(7),(24) and (27), this requires computing for all
directions ` ∈ RTL

ρYk
(`) = max

i∈Ik
inf

λ∈R≥0
f i(λ). (30)

Similarly to above, we accelerate the computation of (30)
by solving the minimization problems for i ∈ Ik in parallel,
and applying the following improvements:

• updating the estimates for all f i(λ) with every sam-
ple, as warranted by Assumption 1,
• using a branch-and-bound algorithm to eliminate the
f i for which the upper bound is lower than the
currently largest lower bound.

We provide experimental comparison of the different tech-
niques in Sect. 4.

3.5 Intersecting a Flowpipe with a Polyhedron

The results from the previous section can be used to
compute the intersection of a flowpipe with a polyhedron.
To trade accuracy against performance, we follow the
lines of Sect. 2.4 and intersect with each halfspace of the
polyhedron separately. Our goal is to intersect the convex
hull of the flowpipe Ωi in the kth interval Ik with the set

G∗ =
{
x
∣∣∣ m∧
j=1

āT

jx ≤ b̄j
}
,

similar to the intersection with a single halfspace in (30).
For the intersection of Ωi the jth halfspace in G∗, we must
minimize the function

f ij(λ) = ρΩi(`− λāj) + λb̄j . (31)

Applying the same approximation for polyhedron intersec-
tion as in (12), we obtain the overapproximation

ρYk
(`) ≤ max

i∈Ik
min

j=1,...,m
inf

λ∈R≥0
f ij(λ). (32)

As with (30), we can use a branch-and-bound algorithm
to eliminate instances of i, j for which the upper bound of
f ij(λ) is lower than the largest lower bound.

4. EXPERIMENTAL RESULTS

Two benchmarks shall illustrate the performance and
precision of the proposed algorithms.

Timed bouncing ball : We take advantage of the simplicity
of the timed bouncing ball to compare accuracy and speed
of the different intersection variants. The timed bouncing
ball has the state variables position x, velocity v, and time
t. Its hybrid automaton model consists of a single location
with invariant x ≥ 0 and continuous dynamics

ẋ = v, v̇ = −g, ṫ = 1,

where g is the gravitational constant (here normed to 1).
A discrete transition from the location to itself changes
the sign of the velocity when the ball touches the ground.
Here we chose the guard constraints x ≤ 0 and v < 0 (the
latter to keep the velocity from flipping when the ball goes
upwards), and the assignment

x′ = x, v′ = −cv, t′ = t,

where c is a constant for the loss of speed (here 0.75). The
initial states are

10 ≤ x ≤ 10.2, v = 0, t = 0.

Table 3. Speed versus accuracy comparison of differ-
ent variants of the discrete image computation, applied
to the timed bouncing ball example. The accuracy is

measured in x at the highest point of the last jump

direction ε clustering runtime(s) errx

standard discrete image computation

box TH+ 1.3 2.480

box TH&CH+ 2.6 1.635

box CH+ 31.2 1.442

oct TH+ 3.0 0.398

oct TH&CH+ 12.7 0.327

oct CH+ 36.6 0.270

discrete image with precise intersection

box 0.0 TH+ 1.3 0.506

box 0.0 TH&CH+ 3.4 0.443

box 0.0 CH+ 55.9 0.330

precise intersection of convex hull with branch & bound

box 1.0 CH− 0.8 0.601

box 0.1 CH− 0.6 0.241

box 0.0 CH− 0.6 0.233

Depending on the technique used, we cluster the convex
sets either before or after we compute the image of the
discrete transition. This is indicated in the clustering
column of Table 3 by (-) and (+), respectively. We consider
as alternatives the template hull of all sets (TH), the
convex hull of all sets (CH), and a mix of both (template
hull of about 30%, then convex hull). These alternatives
have different speed/accuracy trade-offs. Table 3 shows the
performance results for computing the reachable states
over five jumps. The error threshold used in our Lower
Bound Search is indicated by ε. As a measure of accuracy,
we take the difference of the height of the last jump with
the accurate value, which was obtained manually. The time
step is fixed at δ = 0.01, i.e., each convex set Ωi in the
flowpipe approximations covers the flowpipe over the time
span [ti, ti + δ].

The standard variant applies the outer approximation
before the intersection, as in (19). Using box directions,
the error is so large that the flowpipe of the 5th jump is
reaches higher than the 4th, and adding further jumps
the computed sets diverge to infinity. Using octagonal
directions improves the precision, but slows down the
analysis as 18 directions have to be computed instead
of 6. Note that the convex hull clustering for octagonal
directions is not much slower than for box directions
because fewer sets intersect. But even with octagonal
directions and very small time steps, the precision leaves
to be desired.

The precise variant of the image computation consists of
the image operator (23) using Lower Bound search with
error bound ε. It shows better accuracy than the standard
variant, but convex hull clustering comes at a loss in
speed. As we do not detect a significant gain in speed
from increasing the error bound, only results for ε = 0
are shown.

The precise branch & bound variant shows both the high-
est accuracy and the greatest speed. It uses the convex
approximation of (23) indicated in (30). Its major gain
in performance comes from applying (16) and (17), which
reduces the number of sets in the computation. Increasing



Table 4. Speed versus accuracy comparison of dif-
ferent variants of the discrete image computation, for
computing a fixed-point of the filtered oscillator exam-
ple. The accuracy shows in the max amplitude of the

output signal z

vars δ ε clustering runtime(s) max. z iter

standard discrete image computation

6 0.01 TH+ 0.3 0.570 5

18 0.01 TH+ 2.1 0.361 9

34 0.01 TH+ 8.7 0.243 13

66 0.05 TH+ 17.4 0.291 23

130 0.05 TH+ 132.7 0.569 39

130 0.025 TH+ 206.0 0.166 41

precise intersection of convex hull with branch & bound

6 0.01 0 CH− 0.4 0.567 5

18 0.01 0 CH− 2.4 0.356 9

34 0.01 0 CH− 9.0 0.237 14

66 0.05 0.1 CH− 17.3 0.243 23

66 0.05 0.01 CH− 18.1 0.232 24

66 0.05 0.001 CH− 27.4 0.192 37

66 0.05 0 CH− 55.6 0.190 71

130 0.05 0.1 CH− 126.0 0.339 39

130 0.05 0.01 CH− 126.5 0.314 39

130 0.05 0.001 CH− 205.5 0.190 39

130 0.025 0.01 CH− 174.2 0.128 65

the error of the intersection computation reduces some-
what the number of samples, but the time gain is not
substantial, see also Remark 1.

Filtered Oscillator : For a scalability comparison we turn to
the filtered oscillator from Frehse et al. [2011]. It consists
of a switched linear oscillator with two state variables x, y
and four locations that is attached to K first-order filters
put in sequence. The total number of state variables is
therefore K+ 2. The filter stack produces the smoothened
output signal z.

Table 4 shows results for up to 130 state variables, for
both standard discrete image computation and the pro-
posed variant with precise intersection. All instances are
computed using box directions. For all except the lower
dimensional versions, the precise intersection variant out-
performs the standard operator in precision, and often
also in speed. In this example, the capacity to compute
the intersection up to a given error (column 3) shows its
benefits: a small but not too small error greatly reduces
the analysis time, at an acceptable loss in accuracy.

ACKNOWLEDGEMENTS

The authors thank Colas Le Guernic for fruitful discus-
sions on the intersection problem.

REFERENCES

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Hen-
zinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

R. E. Burkard, H. W. Hamacher, and G. Rote. Sandwich
approximation of univariate convex functions with an
application to separable convex programming. Naval
Res. Logistics, 38:911–924, 1991.

George B. Dantzig and Mukund N. Thapa. Linear Pro-
gramming 2: Theory and Extensions. Springer, 2003.

Goran Frehse and Rajarshi Ray. Design principles for
an extendable verification tool for hybrid systems. In
ADHS09 : 3rd IFAC Conference on Analysis and Design
of Hybrid Systems, 2009.

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott
Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado,
Antoine Girard, Thao Dang, and Oded Maler. Spaceex:
Scalable verification of hybrid systems. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, CAV, volume
6806 of LNCS, pages 379–395. Springer, 2011. ISBN
978-3-642-22109-5.

Colas Le Guernic. Reachability analysis of hybrid systems
with linear continuous dynamics. PhD thesis, Université
Grenoble 1 - Joseph Fourier, 2009.

Colas Le Guernic and Antoine Girard. Reachability
analysis of hybrid systems using support functions.
In Ahmed Bouajjani and Oded Maler, editors, CAV,
volume 5643 of LNCS, pages 540–554. Springer, 2009.
ISBN 978-3-642-02657-7.

Rajarshi Ray and Goran Frehse. An approach to direct
minimization of convex piecewise linear functions.
Technical report, Verimag, November 2011. URL
http://www-verimag.imag.fr/~ray/technical_
reports/minimizing_convex_functions.pdf.


