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ABSTRACT
In this paper, we present an approximation of the set of
reachable states, called flowpipe, for a continuous system
with affine dynamics. Our approach is based on a represen-
tation we call flowpipe sampling, which consists of a set of
continuous, interval-valued functions over time. A flowpipe
sampling attributes to each time point a polyhedral enclo-
sure of the set of states reachable at that time point, and
is capable of representing a nonconvex enclosure of a non-
convex flowpipe. The use of flowpipe samplings allows us
to represent and approximate the nonconvex flowpipe effi-
ciently. In particular, we can measure the error incurred by
the initial approximation and by further processing such as
simplification and convexification. A flowpipe sampling can
be efficiently translated into a set of convex polyhedra in a
way that minimizes the number of convex sets for a given
error bound. When applying flowpipe approximation for the
reachability of hybrid systems, a reduction in the number of
convex sets spawned by each image computation can lead to
drastic performance improvements.

Categories and Subject Descriptors
G.1.7 [Numerical Analysis]: Ordinary Differential Equa-
tions—Initial value problems

Keywords
Hybrid systems, verification, reachability, tools

1. INTRODUCTION
A widely used strategy for computing the reachable states

of a continuous or hybrid system is to cover the flowpipes
(bundles of trajectories in the state space) with a finite but
frequently large number of convex sets, which can be repre-
sented, e.g., as polyhedra, zonotopes, ellipsoids and support
functions [1, 2, 7, 8, 9, 4]. Each of the convex sets covers the
flowpipe on a certain time interval, and the approximation
error usually increases rapidly with the size of this interval.
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Often, the time step has to be made very small to achieve
a desired accuracy. This in turn may lead to a very large
number of convex sets that, depending on the processing
or further image computation to be performed, can quickly
become prohibitive. For reachability analysis of hybrid sys-
tems in particular, we have often observed a fatal explosion
in the number of sets when more than a few of the convex
sets can take a discrete transition, as each will spawn a new
flowpipe in the next state, and so on.

The goal of this paper is to address this fundamental prob-
lem from two angles: Firstly, we use a representation, which
we call flowpipe sampling, that consists of a set of contin-
uous, interval-valued functions over time. A flowpipe sam-
pling attributes to each time point a polyhedral enclosure of
the set of states reachable at that time point, thus capable of
representing a nonconvex enclosure of a nonconvex flowpipe.
This representation helps to decouple, as far as possible, the
accuracy from the number of convex sets created in the end.
Secondly, we propose a clustering procedure that aims to
minimize the number of convex sets produced for a desired
accuracy and does so using accuracy bounds established by
the flowpipe construction. A-posteriori error measurements
help evaluate the distance of the approximation to the actual
flowpipe.

The following examples shall illustrate different aspects
of the flowpipe approximation problem, as well as showcase
the performance of our proposed solution.

Example 1.1 (Helicopter). Figure 1(a) show a flow-
pipe approximation for an affine helicopter model with 28
state variables plus a clock variable. It was obtained using
the approach in [4], which constructs for each time-step a
convex polyhedron in the 29-dimensional state space. The
facet normals of the polyhedra, also called template direc-
tions, are given by the user. In this case, the axis directions
are used so that the polyhedra are boxes. The complex dy-
namics of the system require using a very small time step
throughout the time horizon of 30 s. Note that only the pro-
jection on two of the 29 variables is shown (the vertical speed
and the clock), while the approximation takes the variation
of all variables into account. As a result of the small time
step, 1440 convex sets are constructed for a given directional
error estimate of ε = 0.025. The construction itself is com-
putationally cheap at 5.9 s CPU time, but the sheer number
of sets makes further processing and image computation im-
practical.
The approach proposed in this paper combines an enhanced
flowpipe approximation with adaptive clustering that guaran-
tees a conservative error bound on the directional distance to
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(a) The flowpipe approximation from [4] constructs one con-
vex polyhedra per time-step, in total 1440 polyhedra
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(b) The flowpipe approximation with clustering proposed in
this paper constructs 32 convex polyhedra

Figure 1: Flowpipe approximations for the 28-
dimensional affine helicopter model from Ex. 1.1,
plus a clock. The shown sets are projections of 29-
dimensional polyhedra onto two variables, the ver-
tical speed and the clock

the actual reachable set at each point in time. The time step
is adapted separately for each of the template directions and
can therefore be considerably larger. In the directions corre-
sponding to the axis of the clock the system evolves linearly,
so the time step spans the entire time horizon. The cluster-
ing step produces the 32 polyhedra shown in Fig. 1(b) for a
given directional error bound of ε = 0.025. The construc-
tion of the flowpipe sampling takes 9.4 s and the clustering
and outer polyhedral approximation 4.8 s.

As the following example illustrates, the convexification er-
ror is by no means restricted to complex dynamics.

Example 1.2 (Hourglass). Consider the simple lin-
ear ODE system ẋ = 0, ẏ = x, with initial states X0 =
{−1 ≤ x(0) ≤ 1, y(0) = 0} as shown in Fig. 2(a). We con-
sider the states reachable up to time t = 1. The reachable
set is pointwise convex in time, but every convex set that
covers the reachable states over a nonsingular time interval
is forcibly an overapproximation. The time-step adaptation
of the LGG-algorithm in [4] decreases the time step until all
error terms fall below the desired threshold. In this case, the
error terms are zero since the trajectories are linear, i.e.,
x(t) = x(0), y(t) = t · x(0). The LGG-algorithm therefore
covers the whole flowpipe in a single timestep. In the best
case (arbitrarily well-chosen template directions), the result
is the convex hull of the flowpipe, shown in Fig. 2(a).

The flowpipe approximation proposed in this paper can
produce a result of arbitrary accuracy in terms of a direc-
tional error that is measured in the template directions. As
more template directions are added, this directional error
converges towards the Hausdorff distance between the ac-
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(a) The initial set X0, the final set X1, and the smallest convex
approximation of the reachable set X[0,1] (shaded)
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(b) An approximation of X[0,t] constructed by the proposed
technique for a given error bound 0.1

Figure 2: Example 1.2 has a nonconvex reachable set
in the shape of an hourglass. It is pointwise convex
in time, but every convex set covering a nonsingular
interval is forcibly an overapproximation. All tra-
jectories are linear, so the approximation error is
impossible to detect based on the dynamics alone

tual reachable states and the overapproximation. Figure 2(b)
shows the result for a given error bound 0.1 in 64 uniformly
distributed template directions.

The basis of our approach is the representation of a convex
set by its support function. Simply put, given the normal
vector of a halfspace (direction), the support function tells
the position where the halfspace touches the set such that it
contains it. If the dynamics are affine and the set of initial
states is convex, the states reachable at a given point in time
is also convex and can be represented by their support func-
tion. The flowpipe can therefore be described by a family
of support functions parameterized by time, which has been
considered in, e.g., [13, 10]. Our flowpipe sampling builds
on this concept, which we refine by accounting for the fact
that we can only compute a finite number of values in terms
of both direction and time points. There are methods to ap-
proximate flowpipes directly with sets that are nonconvex,
e.g., with polynomial tubes [12].

The flowpipe construction in this paper builds heavily on
previous work in [9, 4]. Notably, this paper provides error
measurements that include the convexification error. For
more detailed comments, see Sect. 2.4. The clustering ap-
proach of Sect. 3 is, to the best of our knowledge, novel.
For lack of space, we have omitted several proofs that can
be found in [5]. The SpaceEx tool and examples from the
paper are available at the SpaceEx website [3].

In the next section, we define flowpipe samplings as a
general means to describe and approximate flowpipes and
then present our flowpipe approximation algorithm. We also
show how a flowpipe sampling can be translated into a set



of convex polyhedra. In Sect. 3, we present our clustering
approach, which minimizes the number convex polyhedra
that a flowpipe sampling defines. Section 4 presents some
experimental results.

2. FLOWPIPE APPROXIMATION IN
SPACE-TIME

We consider continuous dynamical systems given by dif-
ferential equations of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (1)

where x(t) ∈ Rn and A ∈ Rn × Rn. The closed, bounded,
and convex set U ⊆ Rn can represent, e.g., nondeterminis-
tic inputs, disturbances or approximation errors. The initial
states of the system are given as a convex compact set X0,
i.e., x(0) ∈ X0. We refer to the states reachable from X0 by
time elapse as the flowpipe of X0. We compute a sequence
of closed and bounded convex sets Ω0, . . . ,ΩN that covers
the flowpipe using an extension of the approximation tech-
nique in [4]. In our construction, each Ωi is the result
of convex hull and Minkowski sum operations on polytopes.
So Ωi is itself a polytope, but explicitly computing it would
be prohibitively expensive in higher dimensions. Its support
function can, however, be computed efficiently for any given
direction. In the next section we present how we approxi-
mate convex sets by computing their support function, and
in the following section we extend the approach to flowpipes.

2.1 Approximating Convex Sets with Support
Samples

A convex set can be represented by its support function,
which attributes to each direction in Rn the signed distance
of the farthest point of the set to the origin. Computing the
value of the support function for a given set of directions,
one obtains a polyhedron that overapproximates the set. We
call this sampling the support function. In this paper, we
allow this computation to be approximative, i.e., a lower
and an upper bound on the support function is computed.
In this section, we recall some basics, define support samples
and derive error bounds for approximations from support
samples.

We use the following standard notation for operations on
sets. Let X ,Y ⊆ Rn be sets, λ ∈ R, and M be an m × n
matrix of reals. We denote λX = {λx | x ∈ X}, MX =
{Mx | x ∈ X}, and X ⊕ Y = {x + y | x ∈ X , y ∈ Y}
(Minkowski sum). A halfspace H ⊆ Rn is the set of points
satisfying a linear constraint

H =
{
x | aTx ≤ b

}
,

where a = (a1 · · · an) ∈ Rn and b ∈ R. A polyhedron P ⊆ Rn
is the intersection of a finite number of half spaces

P =
{
x
∣∣∣ m∧
i=1

aTix ≤ bi
}
,

where ai ∈ Rn and bi ∈ R. If such ai and bi are know, we
say the polyhedron is given in constraint representation. A
polytope is a polyhedron that is bounded. The convex hull
CH(X ) ⊆ Rn of a set X is

CH(X ) =
{n+1∑
i=1

λivi

∣∣∣ vi ∈ X,λi ∈ R≥0,

n+1∑
i=1

λi = 1
}
.

The support function of a nonempty, closed and bounded
continuous set X ⊆ Rn with respect to a direction vector
` ∈ Rn is

ρX (`) = max{`Tx | x ∈ X}.

The set of support vectors (or maximizers) of X in direction
` is denoted by

σX (`) = {x∗ ∈ X | `Tx∗ = ρX (`)}.

We are interested in support functions because many set op-
erations are computationally cheaper to carry out on sup-
port functions than on, say polyhedra [9]. For instance, the
operations MX , X ⊕ Y, and CH(X ∪ Y) can be very ex-
pensive for polyhedra in constraint representation, while for
support functions they are simple:

ρMX (`) = ρX (MT `),

ρX⊕Y(`) = ρX (`) + ρY(`),

ρCH(X∪Y)(`) = max{ρX (`), ρY(`)}.

Because support functions are cheap, we would like to use
them in our flowpipe approximation. However, in our con-
struction it is not always possible or efficient to compute
the exact value of the support function. Instead, we allow
for interval bounds on the support function. Furthermore,
we consider that those bounds are only computed for a fi-
nite number of directions. In the following, we examine how
such bounds provide an outer approximation of the actual
set and characterize the approximation error. Given a set X ,
a support sample r = (`, [r−, r+]) pairs a direction ` ∈ Rn
with a real-valued interval [r−, r+] that contains the value
of the support function of X , i.e.,

ρX (`) ∈ [r−, r+]. (2)

A support sampling is a set of support samples

R = {r1, . . . , rK}, with rk = (`k, [r
−
k , r

+
k ]).

Its outer approximation is the polyhedron

dRe =
{
x
∣∣∣ ∧
k

`Tkx ≤ r+
k

}
, (3)

i.e., given a support sampling R of X , we have that X ⊆ dRe.
From the lower bounds in the support samples we can

derive a lower bound on the support function in any direc-
tion, which allows us to bound the approximation error of
the outer approximation. By definition, a support sample
rk implies that there is at least one point x ∈ X such that
`Tkx ≥ r−k , as illustrated in Fig. 3. Let the facet slab of rk be

bRck = dRe ∩ {`Tkx ≥ r−k }, (4)

then the support function in direction ` cannot be lower than

min{`Tx | x ∈ bRck} = −ρbRck (−`).

Combining the lower bounds from all facet slabs, we obtain
the following result:

Lemma 2.1. Given a support sampling R of a nonempty
compact convex set X , the support function of X is bounded
in any direction ` by ρ−R(`) ≤ ρX (`) ≤ ρ+

R(`), where

ρ+
R(`) = ρdRe(`), (5)

ρ−R(`) = max
k=1,...,K

−ρbRck (−`). (6)
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Figure 3: A support sampling R of a set X (solid
black) defined over the axis directions, with lower
and upper bound being ε apart. The outer approx-
imation dRe (solid grey) is shown together with the
facet slabs bRck (dashed), each of which contains at
least one point of X . For every direction `, dRe pro-
vides an upper bound ρ+

R(`) on the support function,
and the facet slabs a lower bound ρ−R(`)

For a given direction `, the lower bound (6) can be reformu-
lated as a linear program with O(Kn) variables and O(K2)
constraints by introducing an additional variable z:

ρ−R(`) = min
{
z ∈ R

∣∣∣ ∧
k=1,...,K

z ≥ `Txk ∧ xk∈bRck
}
. (7)

We consider two ways to measure the error between the
actual set and its outer approximation: a directional error
and the Hausdorff distance. The directional error of a sup-
port sampling R is the width of the bounds on the support
function,

εR(`) = ρ+
R(`)− ρ−R(`). (8)

Let Bk = {x | ‖x‖k = 1} be the unit ball in the k-norm.
The directed Hausdorff distance between sets X ,Y is

~dH(X ,Y) = sup
x∈X

inf
y∈Y
‖x− y‖2 = inf{ε > 0 | X ⊆ Y ⊕ εB2},

and the Hausdorff distance is

dH(X ,Y) = max
(
~dH(X ,Y), ~dH(Y,X )

)
.

Lemma 2.2. Given a support sampling R of X ,

dH(X , dRe) ≤ max
‖`‖2=1

εR(`). (9)

Using the LP formulation (7), the above bound on the Haus-
dorff distance can be rewritten as a quadratic maximization
problem with bilinear constraints. This bound is generally
quite costly to compute. But it implies that, as more and
more directions are sampled, the largest directional error
tends towards a bound on the Hausdorff distance (assuming
directions are uniformly distributed).

2.2 Approximating Flowpipes with Support
Samples over Time

Our space-time construction is a natural extension of the
support function representation of sets. For a given convex
and bounded set of initial states X0, we define the flowpipe
as the states reachable from this set.

Formally, let Xt be the states reachable from X0 after
exactly time t,

Xt = {x(t) | x(0) ∈ X0, ∀τ ∈ [0, t] ∃u(τ) ∈ U :

ẋ(τ) = Ax(τ) + u(τ)}. (10)

A flowpipe segment over a time interval [t1, t2] is the set

Xt1,t2 =
⋃

t1≤t≤t2

Xt.

In this paper, we assume a finite time horizon T and refer to
X0,T as the flowpipe. Given that X0 is convex and that the
dynamics are affine, Xt is convex at any time t. For a fixed
value of t, we can approximate Xt with a support sampling

R = {(`1, r1), . . . , (`K , rK)},

where the `k given template directions, and the rk are in-
tervals containing the support function of Xt. Recall that
R allows us to construct an outer approximation of Xt and
quantify the approximation error.

We describe the nonconvex flowpipe over the time inter-
val [0, T ] in a similar way. Letting t vary in the time in-
terval [0, T ], we consider the bounds of the interval rk(t) =
[r−k (t), r+

k (t)] to be continuous functions over time. For ev-
ery t, rk(t) contains the support function of Xt in direction
`k(t). A flowpipe sampling over K directions is a function
F that attributes to each t a support sampling

F (t) = {(`1(t), r1(t)), . . . , (`K(t), rK(t))}. (11)

The pairs (`k(·), rk(·)) are called flowpipe samples. In this
paper, we consider the directions to be constant over time,
and simply write `k instead of `k(t). By combining the outer
approximation of the support sampling F (t) at each time
point, we obtain an outer approximation of a flowpipe seg-
ment Xt1,t2 . With Lemma 2.2 it is straightforward to derive
a bound on the Hausdorff distance between the flowpipe seg-
ment and its outer approximation.

Lemma 2.3. Let F be a flowpipe sampling (11) and let

dF et1,t2 =
⋃

t1≤t≤t2

dF (t)e , (12)

εt1,t2 = max
t1≤t≤t2

max
‖`‖2=1

εF (t)(`). (13)

Then Xt1,t2 ⊆ dF et1,t2 and the Hausdorff distance between

dF et1,t2 and Xt1,t2 is bounded by εt1,t2 .

Example 2.4. In Ex. 1.2 (hourglass), the trajectories are
x(t) = x(0), y(t) = t · x(0), with initial states X0 = {−1 ≤
x(0) ≤ 1, y(0) = 0}. The support function over time for a
direction vector ` =

(
α β

)
is

ρX0(`) = max
x(0)∈X0

(
α β

)
·
(
x(0) t · x(0)

)
= max(α+ βt,−α− βt). (14)

Let’s assume that flowpipe samples have been computed for
directions `1 =

(
−1 4

)
, `2 =

(
−3 5

)
, `3 =

(
1 0

)
, as

well as their negatives. Assuming the computation is ex-
act, the lower and upper bounds of the flowpipes are iden-
tical. The flowpipe samples r1(t), r2(t), r3(t) are shown
in Fig. 4(a). The resulting outer approximation dF e0,T is

shown in Fig. 4(b) .
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Figure 4: Approximating the flowpipe of Ex. 1.2 for
a given set of directions `1, `2, `3, and their negatives

2.3 Polyhedral Approximations of Flowpipes
A flowpipe sampling describes a flowpipe in the same way

that a support sampling describes a convex set, only that
the flowpipe and its outer approximation can be nonconvex.
We now show that the outer approximation of a flowpipe
sampling with piecewise linear upper bounds is a set of con-
vex polyhedra, one for each segment for which all upper
bounds are concave.

Let F be a flowpipe sampling (11), such that for all k,
r+
k (t), r−k (t) are piecewise linear. For constructing the poly-

hedra, we need some technical notation for describing the
linear pieces. Let the i-th pieces of r+

k (t), r−k (t) be

r+
k (t) = α+

k,it+ β+
k,i for τ+

k,i ≤ t ≤ τ
+
k,i+1,

r−k (t) = α−k,it+ β−k,i for τ−k,i ≤ t ≤ τ
−
k,i+1.

In the following, we consider the time interval [t1, t2] and will
assume for simplicity that r+

k (t), r−k (t) have breakpoints at
the boundary of [t1, t2], i.e., for some i′ < i′′, t1 = τ+

k,i′ and

t2 = τ+
k,i′′ . Let I+

k ,I−k be the sets of indices i of the pieces of

r+
k (t), respectively r−k (t), that lie completely inside the time

interval [t1, t2].
If all computed flowpipe samples are concave over [t1, t2],

their outer approximation is convex:

Lemma 2.5. If for all k, r+
k (t) is concave on the time

interval [t1, t2], then dF et1,t2 is the convex polyhedron

dF et1,t2 = M JF Kt1,t2 , where (15)

JF Kt1,t2 =
{

(x, t)
∣∣∣ t1≤ t≤ t2 ∧∧

k,i∈I+
k

`Tkx ≤ α+
k,it+ β+

k,i

}
,

and the matrix M maps (x, t) ∈ Rn+1 to x ∈ Rn.

With Lemma 2.5, we can take a flowpipe sampling F and
compute the support function of dF et1,t2 by solving a single

LP with O(n) variables and O(KZ) constraints, where K is
the number of template directions and Z is a bound on the
number of pieces of the r+

k (t) in the time interval [tj , tj+1].

With the above, we can construct a flowpipe approxima-
tion consisting of convex polyhedra Ω0, . . . ,ΩN as follows:

1. Compute a piecewise linear flowpipe sample for each
template direction.

2. Identify time intervals [t0, t1], . . . , [tN , tN+1], with t0 =
0 and tN+1 = T , such that in each interval all samples
have concave upper bounds.

3. Construct for each interval [ti, ti+1] its convex polyhe-
dron Ωi = dF eti,ti+1

using (15).

Example 2.6. The flowpipe samples of Ex. 2.9, shown
in Fig. 4(a), are all concave on the time intervals [0, 0.25],
[0.25, 0.6], and [0.6, 1]. The outer approximation of the flow-
pipe consists of three convex polyhedra Ω0 = dF e0,0.25, Ω1 =

dF e0.25,0.6, and Ω2 = dF e0.6,1, shown in Fig. 4(b) . The
facet normals of Ω0 are `1, `3, those of Ω2 are `2, `3, and
those of Ω3 are a linear combination of `1 and `2.

The above approach produces a precise flowpipe approxi-
mation, but the number of polyhedra can be very large,
especially if the concave intervals of the different flowpipe
samples do not coincide. If an upper bound of a flowpipe
samples is not concave on an interval, we can replace it by
its concave envelope. The concave envelope of a piecewise
linear function with N points, sorted along the time axis,
can be computed in O(N) with the Graham scan. The ap-
proximation error can be measured via the distance to the
envelope. In Sect. 3, we will present a clustering technique
that establishes the largest concave intervals that can be
created by relaxing the upper bounds, under a desired error
bound.

Note that a convex outer approximation does not imply
that the flowpipe segment is convex. We now derive a bound
on the approximation error by using the lower bounds of the
flowpipe samples.

Lemma 2.7. Let for all k, r+
k (t) be concave and r−k (t) be

convex on the time interval [t1, t2]. Let the k-th facet slab
of F be

JF Kkt1,t2=
{

(xk, t) ∈ JF Kt1,t2
∣∣∣∧
i∈I−

k

`Tkxk ≥ α−k,it+ β−k,i

}
, (16)

Then the Hausdorff distance between dF et1,t2 and Xt1,t2 is
bounded by

εt1,t2 = max
‖`‖2=1

εt1,t2(`), where (17)

εt1,t2(`) = max
{
`Tx− z

∣∣∣ (x, t) ∈ JF Kt1,t2 ∧∧
k=1,...,K

z ≥ `Txk ∧ (xk, t)∈JF Kkt1,t2
}

(18)

For a given direction `, (18) can be formulated as a linear
program. Consequently, Lemma 2.7, allows us to compute
a bound on the directional approximation error εt1,t2(`) by
solving a single LP with O(Kn) variables and O(K2Z) con-
straints. If we can solve the program for all `, we obtain a
bound on the Hausdorff distance of dF et1,t2 to the actual
flowpipe segment.



2.4 Computing Flowpipe Samples for Affine
Dynamics

We now present a way to construct flowpipe samples for
affine dynamics of the form (1), i.e., an interval-valued func-
tion that bounds the support function of the reachable states
at time t for a given direction. Our construction takes as
input the initial set X0, a time horizon T , a template direc-
tion `, and an error bound ε. It produces a flowpipe sample
(`, [r−(t), r+(t)]), such that for all 0 ≤ t ≤ T ,

r+(t)− r−(t) ≤ ε.

The sample is piecewise quadratic and can easily be approx-
imated by a piecewise linear sample so that the techniques
of the previous section can be applied. The construction is
based on the approach in [4], from which it differs in two
ways: First, we include a lower bound on the support func-
tion, which is used to evaluate the approximation error at
all stages including clustering. Second, instead of comput-
ing forward with a certain time-step, we start with a time
step that covers the whole time horizon and recursively re-
fine with smaller steps on subdomains where the difference
between upper and lower bound exceeds the error bound.

We exploit the superposition principle to adapt the ap-
proximation separately to the autonomous dynamics (cre-
ated by X0), and to the non-autonomous dynamics (created
by U). Xt can be decomposed into

Xt = Zt ⊕ Yt, (19)

where Zt = eAtX0 and Yt is the set of states reachable when
starting from x = 0 instead of X0:

Yt = {x(t) | x(0) = 0, ∀τ ∈ [0, t] ∃u(τ) ∈ U :

ẋ(τ) = Ax(τ) + u(τ)}. (20)

Note that Z0 = X0 and Y0 = 0. We now turn to construct-
ing a flowpipe sample ω(t) = [ω−(t), ω+(t)] for Zt. We need
the following notation. The symmetric interval hull of a set
S, denoted �(S), is �(S) = [−|x1|; |x1|]× . . .× [−|xd|; |xd|]
where for all i, |xi| = sup{|xi| | x ∈ S}. Let M = (mi,j)
be a matrix, and v = (vi) a vector. We define as |M |
and |v| the absolute values of M and v respectively, i.e.,
|M | = (|mi,j |) and |v| = (|vi|). The approximation uses a
transformation matrix Φ2 defined as

Φ2(A, δ) =

∞∑
i=0

δi+2

(i+ 2)!
Ai, (21)

which is computed similarly to a matrix exponential [4]. Our
starting point is a linear interpolation between Z0 and Zδ.
Using a forward, respectively backward, interpolation leads
to error terms represented by sets E+

Ω ,E−Ω . The intersection
of both error terms gives EΩ. Using a normalized time vari-
able λ = t/δ, let

EΩ(δ, λ) =
(
λE+

Ω (δ) ∩ (1− λ)E−Ω (δ)
)

E+
Ω (δ) = �

(
Φ2(|A|, δ) �

(
A2X0

))
,

E−Ω (δ) = �
(

Φ2(|A|, δ)�
(
A2eAδX0

))
.

The support function of EΩ(δ, λ) is piecewise linear,

ρ(`, EΩ(δ, λ)) =

n∑
i=1

min(λe+
i , (1− λ)e−i )|`i|,

where vectors e+ and e− are such that ρ(`, E+
Ω ) = |`|Te+ and

ρ(`, E−Ω ) = |`|Te−.
An upper bound on the support function of Zt over a time

interval [0, δ] is easy to derive from the linear interpolation
between Z0, Zδ, and the above error terms [4]. For deriving
a lower bound, consider a support vector x− of Z0 = X0 in
direction `. Since the support function of Zδ = eAδX0 is the
maximum of `Tx over all x ∈ Zδ, it is bounded below by the
image of x− at time δ, i.e., by `TeAδx−. From the linear in-
terpolation between x− and eAδx− we derive a lower bound
by subtracting a suitable error term. A similar argument
can be made with the support vector x+ at the end of the
interval, and we take the maximum of both lower bounds.
Using the above error terms we obtain a flowpipe sample as
follows.

Lemma 2.8. We consider the time interval [ti, ti+1]. Let

δi = ti+1−ti, `i = eAti
T
`, `i+1 = eAδi

T
`i, let x− be a support

vector of ρ(`i,X0), and x+ be a support vector of ρ(`i+1,X0).
Let λ = (t− ti)/δi and

ω+(t) =(1− λ)ρX0(`i) + λρX0(`i+1) + ρEΩ(δi,λ)(`i) (22)

ω−(t) = max{(1− λ)`Tix
− + λ`Ti+1x

−,

(1− λ)`Tix
+ + λ`Ti+1x

+} − ρEΩ(δi,λ)(`i). (23)

Then ω−(t) ≤ ρZt(`) ≤ ω+(t) for all ti ≤ t ≤ ti+δi .

The approximation error of ω−(t), ω+(t) in the time interval
[ti, ti + δi] is

εω(ti, ti+1) = max
ti≤t≤ti+1

ω+(t)− ω−(t). (24)

Note that the approximation error decreases at least linearly
with δi. To meet the given error bound εω, we construct
ω−(t), ω+(t) and the corresponding sequence of time points
ti by establishing a list of suitable intervals. We begin with
a single interval [t0, t1] = [0, T ], which covers the entire time
horizon. Each interval [ti, ti+1] in the list is processed in the
following steps:

1. Construct ω−(t), ω+(t) on the interval [ti, ti+1] and
compute εω(ti, ti+1).

2. If εω(ti, ti+1) > εω, split the interval in two. Let t′ =
(ti + ti+1)/2. Replace [ti, ti+1] with intervals [ti, t

′],
[t′, ti+1], and process each starting with step 1.

Example 2.9. Consider computing a flowpipe sample of
Ex. 1.2 (hourglass) for direction `2 and up to an error bound
of ε = 1, as illustrated by Fig. 5. There are no inputs, so
r2(t) = ω(t). We start with the interval [0, 1], which yields
as upper bound the linear interpolation between ω+(0) = 3
and ω+(1) = 2, shown dashed in Fig. 5. In this example, the
lower bound ω−(t) happens to coincide with r2(t). The inital
approximation error is εω(0, 1) = 2.4. Since this exceeds ε,
the interval is split into two pieces, [0, 0.5] and [0.5, 1]. The
approximation errors are εω(0, 0.5) = 0 and εω(0.5, 1) =
0.6. They satisfy the error bound ε, and we obtain the upper
bound ω+(t) shown in Fig. 5.

We now establish a flowpipe sample ψ(t) = [ψ−(t), ψ+(t)] for
Yt. Computing ψ(t) is more difficult than computing ω(t)
because there is no analytic solution for the integral over the
input u(t). Because of the integration, the approximation
error accumulates over time. In order to guarantee that for
all t the (accumulated) error of ψ(t) is below a given bound
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Figure 5: Computing a flowpipe sample of Ex. 1.2
for direction `2

εψ, we impose that the accumulated error at the end of each
interval [ti, ti+1] must lie below the error rate εψ ·ti+1/T . We
use a two-step process: We first compute ψ(ti) at discrete
points in time ti such that the desired error rate is met.
Based on these values we then define ψ(t) over continuous
time. To bound the approximation error we use the error
term

EΨ(U , δ) = � (Φ2(|A|, δ) � (AU)) .

For the following two lemmas, we assume the sequence of
time points ti as given. Its construction is presented af-
terwards, when the required error terms have been defined.
We have the following bounds on ρYt(`) at the discrete time
points ti.

Lemma 2.10. [4] Let t0 = 0, t1, t2, . . . , tN = T be an in-
creasing sequence of time points. Let δi = ti+1 − ti, `i =

eAti
T
`, `i+1 = eAδi

T
`i, ψ

+
t0

= 0, ψ−t0 = 0, and

ψ+
ti+1

= ψ+
ti + δiρU (`i) + ρEΨ(U,δi)(`i) (25)

ψ−ti+1
= ψ−ti + δiρU (`i)− ρ−AΦ2(A,δi)U (`i). (26)

Then for all ti, ψ
−
ti
≤ ρYti (`) ≤ ψ+

ti
.

Based on the bounds on ρYt(`) at the discrete times ti, we
obtain the following bounds over the intervals [ti, ti+1].

Lemma 2.11. Let λ = (t− ti)/δi and

ψ+(t) =ψ+
ti + λδiρU (`i) + λ2ρEΨ(U,δi)(`i), (27)

ψ−(t) =ψ−ti + λδiρU (`i)− λρ−AΦ2(A,δi)U (`i)

− λ2ρEΨ(U,δi)(`i). (28)

Then ψ−(t) ≤ ρYt(`) ≤ ψ+(t) for all ti ≤ t ≤ ti+δi .

We construct the time intervals [ti, ti+1] by refinement until
the error ψ(t) falls below εψ. According to the above Lem-
mas, the error bound on the interval [ti, ti+1] is defined by
the following sequence, starting with εψ(t0) = 0:

εψ(ti, ti+1) =εψ(ti) + max
0≤λ≤1

2λ2ρEΨ(U,δi)(`i)

+ λρ−AΦ2(A,δi)U (`i), where (29)

εψ(ti+1) =εψ(ti) + ρEΨ(U,δi)(`i) + ρ−AΦ2(A,δi)U (`i). (30)

When choosing the time points ti, we must ensure that
largest error in the interval [ti, ti+1] lies below the error
bound, i.e., εψ(ti, ti+1) ≤ εψ. To take into account that
the error εψ(ti) accumulates, we also ensure that the rate
of the accumulated error stays below εψ/T , i.e., εψ(ti+1) ≤
εψ · ti+1/T . Beginning with a single interval [t0, t1] = [0, T ],
each interval [ti, ti+1] is processed in the following steps:

1. Compute εψ(ti+1) and εψ(ti, ti+1).

2. If εψ(ti+1) > εψ · ti+1/T or εψ(ti, ti+1) > εψ, split the
interval in two. Let t′ = (ti+ti+1)/2. Replace [ti, ti+1]
with intervals [ti, t

′], [t′, ti+1], and process each start-
ing with step 1.

Using the superposition principle (19), we finally combine
ω(t) and ψ(t) to obtain a flowpipe sample for Xt as

r(t) = [r−(t), r+(t)] = ω(t) + ψ(t).

The error bound on r(t) is below ε = εω + εψ.

3. CLUSTERING IN SPACE-TIME
Given a flowpipe sampling, our goal is to construct a se-

quence of convex sets that cover the flowpipe and that are no
further than a given distance ε from it. For computational
efficiency, our distance measure is the directional error in
each of the sampled directions, but this implies also a dis-
tance in the Hausdorff sense.

We now given an informal description of our clustering
algorithm, deferring a formal discussion to the subsections
that follow. The algorithm takes as input a flowpipe sam-
pling F = {(`1, r1(t)), . . . , (`K , rK(t))} and an error bound
ε, and produces a flowpipe sampling F ′ by replacing the up-
per bounds r+

k (t) with a piecewise concave envelope with as
few pieces as possible for the given error bound. The basic
principle is to (over)approximate the upper bounds r+

i (t) of
the flowpipe samples with a set of piecewise concave hulls
yi(t), which are constructed such that they are concave over
the same pieces. Recalling from in Sect. 2.3 that an outer
approximation in the form of a convex polyhedron can be
constructed for each concave piece, this effectively reduces
the number of convex sets.

Let ρi(t) = ρXt(`i) be the actual value of the support
function over time. By definition, r−i (t) ≤ ρi(t) ≤ r+

i (t).
The goal of our clustering is to produce a piecewise concave
hull yi(t) that is no farther than ε away from the actual
value ρi(t), i.e., such that ρi(t) ≤ yi(t) ≤ ρi(t) + ε. Since
only r−i (t) and r+

i (t) are known, we must construct the yi(t)
such that

r+
i (t) ≤ yi(t) ≤ r−i (t) + ε. (31)

Finding the minimal number of concave pieces for a func-
tion between a lower and an upper bound is possible by es-
tablishing the inflection intervals of (r+

i (t), r−i (t)+ε), which
will be presented in Sect. 3.1. The set of inflection intervals
has the following property: Any piecewise concave function
between r+

i (t) and r−i (t) + ε has at least one inflection point
inside every inflection interval. The number of inflection
intervals is thus equal to the minimum number of concave
pieces of any yi(t). To have the minimum number of con-
cave pieces, we must find the minimum number of points
such that there is at least one point in every inflection inter-
val of every sample. This turns out to be a graph coloring
problem that is described in Sect. 3.2. The clustering step
itself terminates with the construction of a piecewise con-
cave hull of the flowpipe samples with a minimum number
of pieces. Convex polyhedra can be derived from the concave
pieces as previously described in Sect. 2.3.

If the clustering results in a number of concave pieces that
is still considered too high, one can try to reduce the num-
ber further by recomputing the flowpipe samples with higher
accuracy. This brings the r−i (t) and r+

i (t) closer together,
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Figure 6: Given a flowpipe sample with bounds s−(t), s+(t) and a desired approximation error ε, we construct
a piecewise concave function s′(t) that lies between s+(t) and s−(t) + ε. Fewer concave pieces in s′(t) mean
fewer convex sets produced by the clustering

which increases the slack in the bounds (31) used for clus-
tering. As illustrated by Fig. 6, the new bounds may be
wide enough to admit a fewer pieces. We can obtain a lower
bound on the number of pieces by computing the number of
inflection intervals for the bounds

r−i (t) ≤ yi(t) ≤ r+
i (t) + ε. (32)

3.1 Inflection Intervals of a Flowpipe Sample
Let l(t), u(t) be a pair of piecewise linear functions with

domain [0, T ] such that l(t) ≤ u(t). An inflection interval is
an interval over t that contains at least one inflection point
of any piecewise concave function y(t) lying on or between
l(t) and u(t), and no points that are not inflection points of
a piecewise concave y(t) with a minimum number of pieces.
As a consequence of this definition, the minimum number
of pieces of any y(t) is equal to the number of inflection
intervals of (l(t), u(t)).

Let the breakpoints of l(t) be l0 to lN . We propose the
following algorithm for finding inflection intervals (for sim-
plicity we omit some special cases), see Fig. 7 for an illus-
tration:

1. Perform a greedy piecewise concave minimal function
construction from l0 to lN : choose at each step the
point on the lower bound farthest towards lN that is
still visible.

2. Denote the breakpoints where the function is convex
by b0, . . . , bz.

3. Perform a greedy piecewise concave minimal function
construction in reversed direction, from lN to l0.

4. Denote the breakpoints where the function is convex
by az, . . . , a0.

5. Return the inflection intervals I0 = [a0, b0], . . . , Iz =
[az, bz].

Proposition 3.1. Given intervals I0, . . . , Iz returned by
the above algorithm, there exists a piecewise concave func-
tion between l(t) and u(t) with z+1 inflection points, one in
every interval Ii. There exists no piecewise concave function
between l(t) and u(t) with less than z + 1 inflection points.

Proof. Let us consider one of the bi, let us denote it b
for simplicity, and lb the previous vertex in the piecewise

concave piecewise linear function. lb is on l(t) (but not nec-
essarily one of the li) otherwise the function would not be
minimal. b is on a segment ]li, li+1[ and there is a point
u′ ∈ u(t) on the segment [lb, b] otherwise the function would
not have been greedily constructed. Let us take x in ]b, li+1[,
any concave function on [b, x] above l(t) and below u(t) must
be above lb and x and below u′ which is not possible since u′

is below [lb, x]. Thus any piecewise concave function must
contain at least one inflection point on ]lb, x[, and thus at
least one on ]lb, b], and one on each ]lbi , bi]. Since the inter-
vals are disjoint, the greedy algorithm reaches a minimum
number of inflexion point. Similarly any piecewise concave
function must contain at least one inflection point on each
[ai, lai [.

3.2 Combining Inflection Intervals
Having established the inflection intervals for each flow-

pipe sample, we combine them to find the minimum number
of inflection points, as well as their possible positions, for our
piecewise cover of all samples. Recall that the pieces of the
piecewise cover we seek are common to all samples. We
therefore need to pick at least one point from every inflec-
tion interval of every sample. To minimize their number, we
construct their common sub-intervals, which we call overlap
intervals.

For each function we have a (possibly empty) set of inflec-
tion intervals Ii obtained using the algorithm of Sect. 3.1.
For the following it is not relevant that the inflection inter-
vals originate from different functions, so let I0, I1, . . . , Iz
simply be the set of all inflection intervals. We need to
partition the intervals into groups inside which all intervals
overlap. The output of the algorithm consists of the groups
and for each group their common overlap intervals Jj .

Finding maximal groups of overlapping intervals is equiv-
alent to a coloring problem. Each color j corresponds to one
of the groups and defines an overlap interval, which consists
of the overlap between all members of the group. Two in-
tervals I1, I2 need to be colored differently if they do not
overlap, i.e., if I+

1 < I−2 or I+
2 < I−1 . This relationship is

captured by the comparability graph, whose vertices are the
intervals Ii. Its edges are given by Ii → Ij ⇔ I+

i < I−j ,
which is the so-called interval ordering (a strict partial or-
der). Our problem is equivalent to finding a coloring of the
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[a1, b1], and a piecewise concave function y(t) with the
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Figure 7: Finding the set of inflection intervals, in-
side each of which any piecewise concave function
between l(t) and u(t) has at least one inflection point

comparability graph with the smallest number of colors such
that no two adjacent vertices have the same color. Once the
intervals have been colored, each color corresponds to a set
of intervals that all overlap. We may freely choose an inflec-
tion point from inside the common region for that color.

It is known that the interval ordering is a perfect elimina-
tion ordering of the comparability graph of a set of intervals.
Consequently, a greedy coloring algorithm produces the op-
timal result if it chooses the vertices in an order that satisfies
the interval ordering [11]. Such an order of the vertices can
be obtained by a topological sort, i.e., a depth-first search in
the graph. The total complexity is determined by the size
of the comparability graph and therefore O(z2), where z is
the number of intervals.

Choosing Inflection Points.
Our final set of inflection points consists of one point from

each overlap interval Jj . The approximation error of this
choice can be measured as the distance of the lower bounds
to the resulting piecewise concave functions. The choice in
one inflection interval generally influences the approxima-
tion error of its neighboring intervals as well, so the optimal
choice is a multivariate optimization problem. In our exper-
iments, we have observed that the overlap between the inter-
vals of different directions is usually small, and that choosing
inflection points in the middle of each interval yields results
that are close to the local optimum.

4. EXPERIMENTAL RESULTS
In this section, we present experiments with the proposed

flowpipe approximation and clustering algorithms and com-
pare it with the approximation from [4]. These algorithms
are intended to be used for reachability of hybrid systems in
the verification tool SpaceEx [4]. There, each flowpipe ap-
proximation is followed by the computation of the image of
all enabled discrete transitions. This image computation in-
volves intersecting the flowpipe with the invariants of source
and target locations, as well as the transition guard, which
can be carried out efficiently on polyhedra. The final result
of a flowpipe approximation therefore the polyhedral outer
approximation as described in Sect. 2.3. Note that other
variants of the reachability algorithm avoid polyhedra, e.g.,
by carrying out the intersection on the support function level
through transformation into an optimiziation problem [9, 6].

We compare the following variants:

LGG (state-space approximation without clustering) vari-
able time-step flowpipe construction in the state-space,
then outer polyhedral approximation, both as in [4],

STA (space-time approximation with all pieces) flowpipe
construction as in Sect. 2, then outer polyhedral ap-
proximation of all pieces as in Sect. 2.3 (no clustering),

STC (space-time approximation with clustering) flowpipe
construction as in Sect. 2 and clustering as in Sect. 3,
then outer polyhedral approximation as in Sect. 2.3.

Note that the STA/STC implementation is still a proto-
type, and we expect that memory consumption and cluster-
ing runtime can be reduced. The parameter settings are not
entirely comparable between LGG and STA/STC, since the
error bounds in STA/STC are conservative, while in LGG
they are mere estimates that do not take the nonconvex-
ity error in account. The error bound in STC measures the
total error, including both flowpipe approximation and clus-
tering. We choose that 80% of the error can be taken up by
the flowpipe approximation, so that at least 20% of the error
bound remain as slack for the clustering step.

To avoid a lengthy description of the models, they are
available for download on the SpaceEx website [3]. For il-
lustration, consider a ball in free-fall together with a clock,
with 3 variables x, v, t, dynamics ẋ = v, v̇ = −1, ṫ = 1, and
initial states 10 ≤ x ≤ 10.2, v = t = 0. We construct the
flowpipe until x falls below 0. The axis directions are used
as template directions, so LGG creates bounding boxes of
flowpipe segments in the state space. The flowpipe approx-
imation of STA/STC creates a bounding box for each point
in time, which projected to the state space yields polyhe-
dra with facet normals other than the template directions,
as Fig. 8 illustrates. The error bound ε = 1 is fairly large,
and the clustering step in STC uses the slack to reduce the
number of sets from 8 sets (STA) to 2 sets.

Table 1 shows performance results obtained on a laptop
with i7 processor and 8 GB RAM. All examples use the
axis directions as template directions. For each algorithm,
the table shows the time taken for flowpipe approximation,
the time taken for clustering and constructing the polyhe-
dral approximation, and the memory consumption. As an
implementation-independent indicator of the computational
cost, it shows the total number of times the support function
of the initial set has been evaluated. The key column is the
total number of convex sets covering the flowpipe, and the
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Figure 8: Flowpipe approximation of a ball in free
fall (position over time), with axis directions as tem-
plate directions and a directional error bound ε = 1

goal of the STC algorithm is to reduce it as much as possible
for the given error bound.

The results indicate that the flowpipe approximation in
space-time with clustering (STC) can produce a flowpipe
cover with a small number of sets, while meeting the desired
directional error bounds. The construction uses template
directions, with which the reachable set is approximated
in space-time, pointwise for every time instant. The pro-
jection onto the state space produces polyhedra with facet
normals that are linear combinations of the template direc-
tions. Compared to our previous work, which approximates
the flowpipe directly in the state space, this can improve
precision and reduce the number of sets at the same time.
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